• Title/Summary/Keyword: Virtual model

Search Result 2,634, Processing Time 0.028 seconds

Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method (가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계)

  • Nam, Jin-Suk;Shin, Hang-Woo;Choi, Gyoo-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

A Real-time Multibody Vehicle Dynamics and Control Model for a Virtual Reality Intelligent Vehicle Simulator (가상현실 지능형 차량 시뮬레이터를 위한 실시간 다물체 차량 동역학 및 제어모델)

  • 김성수;손병석;송금정;정상윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a real-time multibody vehicle dynamics and control model has been developed for a virtual reality intelligent vehicle simulator. The simulator consists of low PCs for a virtual reality visualization system, vehicle dynamics and control analysis system a control loading system, and a network monitoring system. Virtual environment is created by 3D Studio Max graphic tool and OpenGVS real-time rendering library. A real-time vehicle dynamics and control model consists of a control module based on the sliding mode control for adaptive cruise control and a real-time multibody vehicle dynamics module based on the subsystem synthesis method. To verify the real-time capability of the model, cut-in, cut-out simulations have been carried out.

A Methodology for Task placement and Scheduling Based on Virtual Machines

  • Chen, Xiaojun;Zhang, Jing;Li, Junhuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1544-1572
    • /
    • 2011
  • Task placement and scheduling are traditionally studied in following aspects: resource utilization, application throughput, application execution latency and starvation, and recently, the studies are more on application scalability and application performance. A methodology for task placement and scheduling centered on tasks based on virtual machines is studied in this paper to improve the performances of systems and dynamic adaptability in applications development and deployment oriented parallel computing. For parallel applications with no real-time constraints, we describe a thought of feature model and make a formal description for four layers of task placement and scheduling. To place the tasks to different layers of virtual computing systems, we take the performances of four layers as the goal function in the model of task placement and scheduling. Furthermore, we take the personal preference, the application scalability for a designer in his (her) development and deployment, as the constraint of this model. The workflow of task placement and scheduling based on virtual machines has been discussed. Then, an algorithm TPVM is designed to work out the optimal scheme of the model, and an algorithm TEVM completes the execution of tasks in four layers. The experiments have been performed to validate the effectiveness of time estimated method and the feasibility and rationality of algorithms. It is seen from the experiments that our algorithms are better than other four algorithms in performance. The results show that the methodology presented in this paper has guiding significance to improve the efficiency of virtual computing systems.

A Study on the Development of Web-based Cyber Model House (Web기반 Cyber Model House 개발 연구)

  • Woo, Seung-Sak;Kim, Byoung-Soo;Choo, Seung-Yeon
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.196-201
    • /
    • 2006
  • Existing model houses have played an important role in allow the customers to choose apartment. As the information technology has been advanced (e.g. a high-speed internet available in unit), customers' personality and preference to the design of apartment and the purchasing pattern have been changed. Construction firms have introduced VR(Virtual Reality) model house (e.g. Quick Time Virtual Reality) to meet the customers' expectation and need. The reality-based QTVR model house does not provide enough quality to satisfy the customers' expectation. To complement the shortcoming of the QTVR model house, this study presents a web-based cyber model house developed by using Turntool and Javascript. The cyber model house allows to communicate between supplier and customer over the internet.

  • PDF

The Interactive Modeling Method of Virtual City Scene Based on Building Codes

  • Ding, Wei-long;Zhu, Xiao-jie;Xu, Bin;Xu, Yan;Chen, Kai;Wan, Zang-xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.74-89
    • /
    • 2021
  • For higher-level requirements of urban planning and management and the recent development of "digital earth" and "digital city", it is urgent to establish protocols for the construction of three-dimensional digital city models. However, some problems still exist in the digital technology of the three-dimensional city model, such as insufficient precision of the three-dimensional model, not optimizing the scene and not considering the constraints of building codes. In view of those points, a method to interactively simulate a virtual city scene based on building codes is proposed in this paper. Firstly, some constraint functions are set up to restrict the models to adhere to the building codes, and an improved directional bounding box technique is utilized to solve the problem that geometric objects may intersect in a virtual city scene. The three-dimensional model invocation strategy is designed to convert two-dimensional layouts to a three-dimensional urban scene. A Leap Motion hardware device is used to interactively place the 3D models in a virtual scene. Finally, the design and construction of the three-dimensional scene are completed by using Unity3D. The experiment shows that this method can simulate urban virtual scenes that strictly adhere to building codes in a virtual scene of the city environment, but also provide information and decision-making functions for urban planning and management.

A Computer Model for Simulating the Bicycle Rider's Behavior in a Virtual Riding System

  • Ding, Wei-long;Ding, Xiao;Chen, Kai;Wan, Zang-xin;Xu, Yan;Feng, Yuan-jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1026-1042
    • /
    • 2020
  • People are increasingly demanding to experience realistic behavior of virtual characters in computer games. In this article, we build a computer model for simulating a bicycle rider's behavior in a virtual riding system. A method to calculate the speed of a bicycle rider is proposed to improve the reality in a virtual riding system. In this method, the property of physical energy is introduced, and the bicycle-riding speed is calculated in real time according to the relationship between the rider's physical energy and bicycle-riding speed. Then based on the analysis of the behavior of a cyclist in a real competition, various behaviors of the virtual rider are designed and a behavior-tree for the virtual bicycle rider is constructed accordingly. On the basis of these, a virtual riding system is developed. The experiments results show that our system can simulate the behavior of a virtual bicycle rider, and thus encourage exercise on a stationary bicycle.

Delivering IPTV Service over a Virtual Network: A Study on Virtual Network Topology

  • Song, Biao;Hassan, Mohammad Mehedi;Huh, Eui-Nam
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.319-335
    • /
    • 2012
  • In this study, we design an applicable model enabling internet protocol television (IPTV) service providers to use a virtual network (VN) for IPTV service delivery. The model addresses the guaranteed service delivery, cost effectiveness, flexible control, and scalable network infrastructure limitations of backbone or IP overlay-based content networks. There are two major challenges involved in this research: i) The design of an efficient, cost effective, and reliable virtual network topology (VNT) for IPTV service delivery and the handling of a VN allocation failure by infrastructure providers (InPs) and ii) the proper approach to reduce the cost of VNT recontruction and reallocation caused by VNT allocation failure. Therefore, in this study, we design a more reliable virtual network topology for solving a single virtual node, virtual link, or video server failure. We develop a novel optimization objective and an efficient VN construction algorithm for building the proposed topology. In addition, we address the VN allocation failure problem by proposing VNT decomposition and reconstruction algorithms. Various simulations are conducted to verify the effectiveness of the proposed VNT, as well as that of the associated construction, decomposition, and reconstruction algorithms in terms of reliability and efficiency. The simulation results are compared with the findings of existing works, and an improvement in performance is observed.

Computerized Human Body Modeling and Work Motion-capturing in a 3-D Virtual Clothing Simulation System for Painting Work Clothes Development

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.19 no.3
    • /
    • pp.130-143
    • /
    • 2015
  • By studying 3-D virtual human modeling, motion-capturing and clothing simulation for easier and safer work clothes development, this research aimed (1) to categorize heavy manufacturing work motions; (2) to generate a 3-D virtual male model and establish painting work motions within a 3-D virtual clothing simulation system through computerized body scanning and motion-capturing; and finally (3) to suggest simulated clothing images of painting work clothes developed based on virtual male avatar body measurements by implementing the work motions defined in the 3-D virtual clothing simulation system. For this, a male subject's body was 3-D scanned and also directly measured. The procedures to edit a 3-D virtual model required the total body shape to be 3-D scanned into a digital format, which was revised using 3-D Studio MAX and Maya rendering tools. In addition, heavy industry workers' work motions were observed and recorded by video camera at manufacturing sites and analyzed to categorize the painting work motions. This analysis resulted in 4 categories of motions: standing, bending, kneeling and walking. Besides, each work motion category was divided into more detailed motions according to sub-work posture factors: arm angle, arm direction, elbow bending angle, waist bending angle, waist bending direction and knee bending angle. Finally, the implementation of the painting work motions within the 3-D clothing simulation system presented the virtual painting work clothes images simulated in a dynamic mode.

Consumers' acceptance and resistance to virtual bank: views of non-users (인터넷전문은행 수용 의도와 저항에 관한 연구: 소비자, 혁신, 환경 특성을 중심으로)

  • Kim, Hyo Jung;Lee, Seung Sin
    • Human Ecology Research
    • /
    • v.57 no.2
    • /
    • pp.171-183
    • /
    • 2019
  • Convergence between technology and financial services is ubiquitous and widespread. Virtual banks represent an important aspect of financial markets that can generate value added for consumers and enhance the quality of financial services. This study explores the effect of innovation characteristics (relative advantage, compatibility, and perceived risk), consumer characteristics (status quo bias), and social mechanisms (network externality: complementarity, numbers of peers) on consumers' adoption intention and resistance to virtual banks. This study adopted an innovation resistance model with two dependent variables: adoption intention and resistance to virtual banks. An online self-administered survey was conducted and 532 or non-users of virtual banks aged 20 to 69 years old were analyzed. Frequency analysis, descriptive analysis, and hierarchical multiple regression indicated that status quo bias, relative advantage, perceived risk, complementarity, and number of peers insignificantly influence the adoption intention regarding virtual banks. Furthermore, status quo bias, relative advantage, perceived risk, and number of peers insignificantly influence the resistance to virtual banks. Female respondents have a lower adoption intention and higher resistance to virtual banks than male respondents. The findings suggest that the innovation resistance model can be useful in understanding consumers'adoption and resistance behavior as well as reveal that innovation characteristics, consumer characteristics, and social mechanism are important antecedent variables of the innovation adoption decision.

Force-Feedback Control of an Electrorheological Haptic Device in MIS Virtual Environment (ER 유체를 이용한 햅틱 마스터와 가상 MIS 환경의 연동제어)

  • Kang, Pil-Soon;Han, Young-Min;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.422-427
    • /
    • 2006
  • This paper presents force-feedback control performance of a haptic device in virtual environment of minimally invasive surgery(MIS). As a first step, based on an electrorheological(ER) fluid and spherical geometry, a new type of master device is developed and integrated with a virtual environment of MIS such as a surgical tool and human organ. The virtual object is then mathematically formulated by adopting the shape retaining chain linked(S-Chain) model. After evaluating reflection force, computational time, and compatibility with real time control, the virtual environment of MIS is formulated by interactivity with the ER haptic device in real space. Tracking control performances for virtual force trajectory are presented in time domain, and theirtrackingerrorsareevaluated.

  • PDF