
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1544

Copyright ⓒ 2011 KSII

DOI: 10.3837/tiis.2011.09.004

A Methodology for Task placement and
Scheduling Based on Virtual Machines

XiaoJun Chen
1
, Jing Zhang

1,2
, and JunHuai Li

1

1 School of computer science and engineering, Xi’an University of Technology

Xi'an, 710048, P.R.China

[e-mail: army.net@163.com]
2 State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University

Xi'an, 710048, P.R.China

[e-mail: ZhangJing@xaut.edu.cn]

*Corresponding author: Jing Zhang

Received January 18, 2011; revised July 18, 2011; accepted September 7, 2011;

published September 29, 2011

Abstract

Task placement and scheduling are traditionally studied in following aspects: resource

utilization, application throughput, application execution latency and starvation, and recently,

the studies are more on application scalability and application performance. A methodology

for task placement and scheduling centered on tasks based on virtual machines is studied in

this paper to improve the performances of systems and dynamic adaptability in applications

development and deployment oriented parallel computing. For parallel applications with no

real-time constraints, we describe a thought of feature model and make a formal description

for four layers of task placement and scheduling. To place the tasks to different layers of

virtual computing systems, we take the performances of four layers as the goal function in the

model of task placement and scheduling. Furthermore, we take the personal preference, the

application scalability for a designer in his (her) development and deployment, as the

constraint of this model. The workflow of task placement and scheduling based on virtual

machines has been discussed. Then, an algorithm TPVM is designed to work out the optimal

scheme of the model, and an algorithm TEVM completes the execution of tasks in four layers.

The experiments have been performed to validate the effectiveness of time estimated method

and the feasibility and rationality of algorithms. It is seen from the experiments that our

algorithms are better than other four algorithms in performance. The results show that the

methodology presented in this paper has guiding significance to improve the efficiency of

virtual computing systems.

Keywords: Virtual machine, virtual computing systems, performance, feature model, task

placement, task scheduling

mailto:ZhangJing@x

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1545

1. Introduction

In high performance computing, the large and complex applications are submitted to the

clusters constituted of several computing nodes to execute parallel computing. The set of tasks

from applications working in clusters depends on the underlying physical structures of

hardware very much [1], so the designers are required to fully understand the characteristics of

underlying physical structures. On one hand, the clusters can raise the speed of applications.

But on the other hand, they greatly restrict the development progress and increase the running

time of applications. When we need to extend the functions of applications or change the

structures of clusters, the source codes of applications should be modified or rewritten with a

great of work. As a result, the dynamic adaptability of applications are too weak to adapt to the

change of requirements. Meanwhile, it is very difficult for traditional clusters to improve the

resource utilization, maintain loads balance and realize the peak performances of systems.

To solve above problems, the virtualization are taken to organize the resources in clusters.

Researchers add a virtualization layer to the hardware to construct a virtual computing system.

If we need to change the functions of applications or the structures of clusters, virtualization

layer would greatly reduce the adjustment of source codes in applications development. Some

researches focused on this area are as follows: (1) the performances of computing systems,

management methods of resources [2][3] and fault-tolerant systems [4]; (2) parallel computing

oriented multi-core processor [5][6]; (3) the applications of virtualization to high performance

computing with more attention to message-driven, tasks mapping and dynamic load balance

[7][8][9][10]; and (4) the deployment of virtualization to clusters with more stress on the

design of VMM(virtual machines monitors) for high performance computing. These results

show that we should make full use of advances of virtualization to implement resources

integration and achieve a single system image with better transparency, compatibility and

applicability [11] via the page-copy and migration. When we take present parallel

programming model to develop the programs and then package them into virtual machines

[12], VMM can adjust the deployment of virtual machines with dynamics to implement the

optimization of resources and create an environment with scalable management based on the

changing trend of loads in virtual machines [13]. The isolation and controllability of the virtual

machines can improve IT security with vulnerability management [14]. The distributed

memory virtualization [15], multiprocessor virtualization [16], I/O virtualization [17][18] and

virtualization management [19][20] are studied to improve the efficiency of multiple virtual

machines. It is concluded from theories and practice that the application of virtualization to

high performance computing is necessary to lay out a solid foundation to the efficient

operation of virtual computing systems in clusters.

Task placement and scheduling are traditionally studied in following aspects: resource

utilization, application throughput, task execution latency, and starvation [21][22][23]. The

partition of a grid service task into subtasks and the distribution of them on available resources

have great influence on the extent of the service reliability and profits [24]. Resource

allocation in heterogeneous computing (HC) environments should match tasks with machines

and schedule the tasks to assigned machines [25]. The mapping of tasks into the machines of a

distributed HC environment has been an NP-complete problem [26]. To maximize the

performance of the system, dynamic mapping is performed when the arrival of tasks is not

known a priori. The goal of a dynamic mapping heuristic is to maximize the value accrued of

completed tasks in a given interval of time [27]. In addition, the minimization of the execution

1546 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

time for an iterative task requires an appropriate mapping scheme to match and schedule the

subtasks to the processors. Some researchers implement and evaluate a semi-static

methodology involving the on-line use of off-line-derived mappings. The off-line phase is

based on a genetic algorithm (GA) to generate high-quality mappings for a range of values for

the dynamic parameters [28]. However, recent breakthroughs in the mathematical estimation

of parallel genetic algorithm parameters are applied to the NP-complete problem of scheduling

multiple tasks to a cluster of computers connected by a shared bus [29]. Some researchers

proposed a load distribution (LD) algorithm to achieve better system performance by

smoothing out any workload imbalance that may exist in a distributed system [30].

After the virtualization is applied to clusters, the task placement and scheduling are very

different from those in traditional clusters, and the focus is more on application scalability and

application performance. Many studies have shown that the methodologies of task placement

and scheduling not only can affect the applications development and deployment, but also

have a great effect on the performances of systems [31][32]. There existed the problem of low

peak performances in some high performance computing systems, because the features of

applications do not match the architectures of computing systems. The excellent scheme of

task placement and scheduling not only can reduce the running time of systems and maintain

their loads balance [33][34][35], but also raise the peak performances of systems by improving

their resource utilization. Task placement and scheduling, a vital technology to assist the

efficient operation of systems, refer to decomposing the tasks into subtasks and then placing

them to different layers of virtual computing systems based on the requirements of users [36].

The problems in system-level and application-level are solved respectively in traditional

clusters, in which, the task placement and scheduling are generally completed by a

management node based on their time-relationships in parallel and serial process, just

considering the factors such as load balance in computing nodes. The shortage of systematic

planning in synchronization, communication and switching enables the task placement and

scheduling generally lack of accuracy and efficiency [37]. Few studies on task placement and

scheduling based on virtual machines make us present a corresponding methodology centered

on tasks, so we focus mainly on task placement and scheduling with virtualization techniques

to improve the performance of systems. On the basis of fully considering the performances of

virtual computing systems and the convenience in applications development and deployment,

the top-down tasks decompositions and subtasks aggregations are used to complete the

placement of subtasks to threads, the mapping from threads to virtual machines and the

scheduling of virtual machines in physical machines. We define the problems in section 2 and

make an overview of task scheduling algorithms in section 3, and then, construct an model of

task placement and scheduling in section 4. Algorithms to solve the goal function in model and

perform tasks execution are designed in section 5 and the experiments are made in section

6.The last section concludes this paper.

2. Problems definition

The parallel applications with real-time constraints are out of the scope in this paper. Our study

concentrates on the parallel applications without real-time constraints in virtualized high

performance computing environments. We assume that virtual machines are scheduled by

using the algorithms of the time slices rotation, such as Credit. Based on our assumption, the

task placement and scheduling based on virtual machines require us to divide the tasks into

subtasks.We construct some parallel layers in systems from the perspective of tasks to

improve the efficiency of parallel computing and the convenience in developing and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1547

deploying applications [38]. We should solve two problems as follows: What kind of

methodologies for task placement and scheduling could maintain the loads balance and

produce the minimum running time in clusters after virtualization? And what kind of

methodologies for tasks decomposition could enable the development and deployment of

applications more satisfy the requirements of designers?

(1) The relationship between tasks decomposition and performances is our first problem.

For several subtasks implementing parallel computing, the running time are from the

computation, synchronization, communication and switching of tasks [39].The switching time

is decided by the quantity of subtasks and their scheduling algorithm. Generally, the fewer the

granularities of subtasks are, the shorter is the time in synchronization, and the more the traffic

information exists. In parallel layers of subtasks, the systems should consider four layers as

follows: 1) If several subtasks are gathered into a thread, they can only execute in a serial way

with no communication time, and their synchronization time is equivalent to the running time

of frontier tasks. 2) If several subtasks run in a middleware with parallelism, the subtasks take

a thread as a unit, whose performance depends on the communication and synchronization

time among threads. As the middleware is running as a process in a virtual machine, we only

need to install a middleware in a virtual machine. 3) If several subtasks run in a host with

parallelism, the subtasks take a virtual machine as a unit, whose performance depends on the

communication and synchronization time among virtual machines. 4) If several subtasks run

in a cluster with parallelism, the subtasks take a host as a unit, whose performance depends on

the communication and synchronization time among hosts. Let i be a layer number of the

architecture in virtual computing systems, ComputationTime be the time from computation,

SwitchTime be the time from switching of subtasks, ComTime be the time from

communication, and SysnTime be the time from synchronization, thus, the overall time of four

layers in virtual computing systems are:
4

1

()i i i

i

Time ComputationTime SwitchTime ComTime SysnTime


    (1)

(2) The relationship between tasks decomposition and the development and deployment of

applications is our second problem. For several subtasks implementing parallel computing, the

fewer the granularities of subtasks are, the easier the implementation of the parallelism is.

When there existed more subtasks in applications [40][41], it would be difficult to develop and

deploy the application because of the intensive control flows and data flows in parallel

subtasks. In parallel layers of subtasks, the systems should consider four layers as follows: 1)

Several subtasks are gathered into a thread. They can be developed in the same way as the

traditional single-threaded applications development, and they can be deployed in the same

way as the traditional single-threaded applications deployment. 2) If several subtasks run in a

middleware with parallelism, they can be developed in the way of multithreaded

applications.Meanwhile, we should solve the problem of the deployment of multi-threads

application to the middleware and the problem of the deployment of middleware to the virtual

machines. 3)If several subtasks run in a host with parallelism, they can be developed and

deployed in the way of distributed applications with parallel computing. 4) If several subtasks

run in a cluster with parallelism, we should maintain the loads balance. Let I1, I2, I3, I4 be the

parallelisms in such four layers, f1(.) be the membership functions of applications development,

f2(.) be the membership functions of applications deployment, thus, the utility value of four

layers in virtual computing systems are:
4

1 2

1

[() ()] 0 1, (1,2,3,4)i i i

i

f f I f I I i


      (2)

1548 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

We think that the tasks decomposition should base on the personal preference of a designer.

On the basis of the designer’s personal preference being satisfied, the running time limites to

the minimum level of utility value, so the problems of task placement and scheduling based on

virtual machines are transferred as the problems of tasks decomposition and the mapping of

subtasks to different layers of virtual computing systems.

3. Task scheduling algorithms overview

There are many task scheduling algorithms that schedule tasks to processors.In general, task
scheduling is presented in two forms: static and dynamic [42]. In static scheduling algorithms,
all information needed for scheduling, such as the structure of the parallel application, the
execution times of individual tasks and the communication costs among tasks must be known
in advance. Static task scheduling takes place during compilation time before running the
parallel application. In dynamic scheduling, however, tasks are allocated to processors upon
their arrival, and scheduling decisions must be made at run time [43][44][45][46]. Based on
the challenges caused by the dynamicity of virtualization and the vagueness of availability
requirements in the scheduling strategy of virtual data centers, some researchers have research
on the efficient dynamic task scheduling in virtualized data centers with fuzzy prediction [47].
It is a dynamic algorithm to schedule tasks without dependence, and different from our
problem.

We design static task scheduling algorithm for the task placement and scheduling based on
virtual machines. We select static task scheduling algorithm because many parallel
applications have long execution times, and hence they require high quality task scheduler to
minimize their running times. Additionally, the static scheduling time of several scientific and
engineering applications is much lower than their run time on systems. For example, the
execution times of more than 50% of the parallel applications that were run on four real
parallel computing systems are between tens to thousands of minutes [48], while the static
scheduling times of parallel applications with diverse characteristics, which were scheduled
using several static scheduling algorithms, are lower than one second as shown in [49].

Static scheduling algorithms can be broadly classified into three main groups: heuristic
algorithms, guided random algorithms and hybrid algorithms [49].

Ⅰ.Heuristic scheduling algorithms move from one point in the search space to another,

following a particular rule. Such algorithms, though efficient, search some paths in the search
space and ignore others [42][43]. Heuristic scheduling algorithms can be divided into three
groups: list-based heuristics, clustering heuristics and duplication heuristics [49]. In list-based
scheduling heuristics, each task is assigned a given priority. The tasks are inserted in a list of
waiting tasks, such that tasks with higher priority are placed before those with lower priorities.
Three steps are then repeated until all the tasks in the list are scheduled: task selection,
processor selection and status update. Clustering heuristics trade off inter-processor
communication overhead with parallelization by allocating heavily communicating tasks to
the same processor. In such heuristics, the tasks are grouped into an unlimited number of
clusters [49][50]. Duplication algorithms start by running a clustering or list based algorithm
to create an initial schedule. This improvement in performance comes at the cost of increasing
the complexity of scheduling process [41].

Ⅱ.Guided random scheduling algorithms mimic the principles of evolution and natural

genetics to evolve near-optimal task schedules. Among the various guided random algorithms,
Genetic Algorithms (GA) are the most widely used for the scheduling problem [19][53][55]. In
attempts to obtain schedules of better quality, many well-known metaheuristics, including
Simulated Annealing (SA) [53], Tabu Search(TS) [49][54], Artificial Immune System (AIS)
[55], Ant Colony Ooptimization (ACO) [50], Particle Swarm Optimization (PSO) [56],

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1549

Simulated Annealing (SA) [34], Tabu search (TS) [57], and Variable Neighborhood Search
(VNS) [35], have been adopted. However, GA usually takes more computing efforts to locate
the optimal in the region of convergence [49], owing to the lack of local search ability. On the
other hand, the trajectory method, such as VNS [36], has shown its potential in exploiting the
promising regions in the search space with high quality solutions. Nevertheless, it is still prone
to premature convergence traps due to the limited exploration ability. Thus, it’s a natural
choice to consider the hybridization of metaheuristics, also named memetic algorithm (MA) in
some literatures [53][58], which has been applied to solve scheduling problems [44].

Ⅲ. Hybrid scheduling algorithms. A hybrid scheduling algorithm combines both heuristic

algorithms and GAs. The Genetic List Scheduling (GLS) algorithm [53] is an example of this
class of algorithms, but it has greater complexity than other algorithms.

Besides to those, there are also high efficient algorithms for the problem of task scheduling
in heterogeneous distributed systems. Examples of these algorithms are: Dynamic Level
Scheduling (DLS) [59], Heterogeneous Earliest Finish Time (HEFT) [49], and Critical Path
on a Processor (CPOP) [49], Mapping Heuristic (MH) [60] and Levelized Min Time (LMT)
[65].Where, DLS and HEFT algorithms are the improvement of heuristic scheduling
algorithms. They are two of the best existing scheduling algorithms for heterogeneous
distributed systems [49], and are employed as benchmark scheduling algorithms in many
studies [52][54]. The DLS algorithm does not schedule tasks between two previously
scheduled tasks. The HEFT starts by setting the computation costs of tasks and
communication costs of edges to their mean values. Each task is assigned a value called
upward rank. In this algorithm, the upward rank of a task is the largest sum of mean
computation costs and mean communication costs along any directed path from this task to an
exit task.

Our task placement is a flow from top to down, so it is a clustering problem in essentially.
For such a problem solving, heuristic algorithm should be selected and used in priority,
because virtualization can shield the heterogeneity of processors. The complex algorithms in
heterogeneous distributed systems, such as DLS, HEFT and so on, should be excluded. In three
static task scheduling algorithms, heuristic algorithms require direct information about the
application and processors to carry out scheduling. Despite the greedy nature, heuristic-based
approaches are not likely to produce consistent results on a wide range of problems. The
heuristic-based scheduling algorithms are always efficient since they narrow the search down
to a very small portion of the solution space by means of greedy heuristics. The heuristic-based
scheduling algorithms are always efficient since they narrow the search down to a very small
portion of the solution space by means of greedy heuristics.

The goals of task scheduling based on virtual machines are the shortest completion time
based on users’ preferences. Our study is different from present task scheduling algorithms in
following aspects:

І. Our algorithm includes two parts. One of them is to make a scheme to plan the task
placement and scheduling from the view of whole system. The other is to perform the
scheduling based on the scheme, in which, current task is selected to decide the next tasks.

Ⅱ. The tasks are combined by an optimal rule to form some suitable quantity of tasks in

different layers from view of systematic clustering, so it is different from present static
scheduling algorithms.

Ⅲ. For collaborative subtasks with complicate interactive time-relationship, more other

factors affecting task placement and scheduling should be considered, such as communication
time, switching time, and synchronization time, and so on.

Ⅳ. Some task scheduling algorithms just consider two layers including tasks and resources.

The task scheduling based on virtual machines is divided into four layers including tasks,
threads, virtual machines, physical machines in virtualized platform. Hierarchical aggregation

1550 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

would transfer the tasks from top to underlying layer and let the tasks combine closely with
each other.

Ⅴ. Because of the data dependence among tasks, the algorithm requires to obtain the output

data from frontier tasks and input them into latter tasks.

4. The construction of model

We describe the tasks in virtualized environment via a new descriptive methodology named

feature model (FM), which lays out a solid foundation to develop the parallel applications.

Combined with FM, the task placement and scheduling are performed with a high effective

way. The model of task placement and scheduling takes FM to forecast the resource utilization,

application throughput, application execution latency, and starvation. Thus,we need to

speculate the performance and estimate the running time of applications considering the

personnel preference in applications development and deployment. This model can help

designers to make a good plan for task placement and scheduling in practice.

4.1 The description of tasks

Task placement and scheduling refer to the tasks decomposition and functions aggregation

[61]. In order to map the subtasks to different layers of virtual computing systems, we analyze

the features of subtasks in tasks decomposition from the view of parallel computing, and then,

take the hierarchical method to get their modest subtasks in their granularities from coarse to

fine. Each of the subtasks can complete a certain functions (called function of feature in this

paper).The relationships among units are further identified to create a feature model.

Description 1 (unit): Unit, a subtask implementing the function of feature, is a tuple with 6

elements unit=(Feature, CFs, IDFs ,ODFs,SCs,time).Where, Feature is the function of

feature, CFs is the set of control flows, IDFs is the set of input data flows, ODFs is the set of

output data flows, SCs is the set of outer interfaces, and time is the time of computation. A

control flow is a tuple with 2 elements CF=(dataitems,type),of which, dataitems is the set of

data items,and type is the type of this control flow with the values {sequence,

ifoption,switch,cycle}. A data flow is a tuple with 3 elements DF=(dataitems, fromFeature,

tofeature), of which, dataitems is the set of data items, fromFeature is the function of feature

providing this data flow, and tofeature is the function of feature requesting this data flow.

unita

uniteunitd

unitcunitb

unitm

unitjuniti

unitgunitf

f1 f2 f3 f4

f9f7

unith

unitl

f5

f10

f6

f12f11

f8

Fig.1 feature model

unitn

f13

Fig. 1. Feature model

Description 2 (FM): Feature model, a conceptual model of tasks, composes of units, control

http://en.wikipedia.org/wiki/Sequence

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1551

flows and data flows. Fig. 1, as an instance of a feature model, is a tuple with 3 elements

FM=(units, CFs, DFs), of which, units is the set of units,CFs is the set of control flows, and

DFs is the set of data flows. In order to make the feature of tasks match the architectures, FM

should be deployed into the layers of computing systems. FM is transferred as

{Threads,VMs,PMs} though effective aggregation among layers. Where, Threads is the set of

threads that units assign,VMs is the set of virtual machines that threads map to, and PMs is the

set of physical machines that VMs are scheduled to.

Description 3 (TPSL): Task placement and scheduling layers are a tuple with 3 elements:

TPSL=(FM,layers,Mappings), of which, FM is the feature model of a task, and layers is the set

of layers in virtual computing systems. We let layers= (thread,VM,PM)，where, thread is the

layer of thread, VM is the layer of virtual machine, and PM is the layer of physical machine.

We let Mappings=(MT, MV, MP).Where, MT is the placement from units to threads:

unit→thread, MV is the mapping from threads to virtual machines: thread→VM, and MP is

the scheduling from virtual machines to physical machines:VM→PM.

4.2 The model of task placement and scheduling

For first problem presented in section 2, we determine the method for computing running time

combined with the description of tasks based on formula (1).

Definition 1 (SysnTime): synchronization time, a deviation between the maximum

computation time and the minimum computation time in parallel subtasks, can be divided into

the time inside threads: SysnTime1, the time among threads:SysnTime2, the time among virtual

machines: SysnTime3, and the time among physical machines: SysnTime4.

0

. [max(.) min(.)]
l

i i k k

k

SysnTime Psysn task time task time


  (3)

Where, taskk is the one of unit,thread,VM,PM description, max(taskk.time) is the maximum
computation time in parallel subtasks of systems, min(taskk.time) is the minimum computation
time in parallel subtasks of systems, l is the quantity of parallel subtasks, and Psysni is the
coefficient of synchronization time.

Definition 2 (ComTime): communication time, the sum of time in tasks communication,

can be divided into the time inside threads: ComTime1, the time among threads:ComTime2 ,the

time among virtual machines:ComTime3, and the time among physical machines:ComTime4.

0

. (. .)
n

i i k

k

ComTime Pcom task ESs length


  (4)

Where,
iPcom is the coefficient of communication time.

Definition 3 (SwitchTime): switching time, the sum of switching time that underlying layer

schedules the top layers, can be divided into the time inside threads:SwitchTime1, the time

among threads: SwitchTime2,the time among virtual machines:SwitchTime3, and the time

among physical machines:SwitchTime4.

1 2 3

.(.)i
i

Pswitch tasks length
SwitchTime

Q Q Q
 (5)

Where,
iPswitch is the coefficient of switching time related to the architecture of computers,Q1

is the quantity of physical machines,Q2 is the quantity of CPUs in a physical machines, and Q3

is the quantity of cores in a CPU.

Definition 4 (I): parallelism, the ratio of computation time between parallel computing and

non-parallel computing in tasks, can be divided into the parallelism inside threads: I1(I1 is 1),

the parallelism among threads: I2, the parallelism among virtual machines: I3, and the

1552 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

parallelism among physical machine: I4. These parallelisms not only can affect the running

time from synchronization, communication and switching, but also decide the matching

degree between tasks and their architectures. The parallelism Ii is expressed as:

0

0

.

.

m

j

j

i n

j

j

task time

I

task time












 (6)

Where,
jtask is the parallel part of tasks in

jtask , n is the quantity of tasks, and m is the quantity

of parallel tasks.

Definition 5 (MD): the matching degree between tasks and their architectures reflects the

overall performance in layers aggregation. In our study, the ratio between the computation

time of pure tasks and running time of computation is taken as the matching degree:

0

4

0 1

(1).

(1). ()

n

j

j

n

j i i i

j i

V unit

MD

V unit SwitchTime ComTime SysnTime



 





   



 
 (7)

Where, (1). jComputationTime V unit   ,and V is the satisfaction that Q1,Q2 and Q3 take to the

quantity of threads caused by feature model aggregation, V[0,I2].In our study, let V be

2 1 2 3

1 2 3
2 1 2 3 1 2 3

.

. . & 1
.

0

I Q Q Q threads length

Q Q Q
V I Q Q Q threads length Q Q Q

threads length

 



  

 ot her s

For second problem presented in section 2, we determine the utility value of membership

function based on formula (2).

Definition 6 (f1): the development membership for applications designers refers to the

personal preference and the acceptance for parallelism. We use the parallelism to measure the

membership. Generally speaking, the higher the parallelism is, the more the subtasks are, thus,

the smaller f1 is. The exponential function is taken to describe this membership, so 1

1
iK I

f e


 ,

of which, K1 is the personal preference coefficient in development.

Definition 7 (f2): the deployment membership for applications designers refers to the

personal preference and the acceptance for parallelism. We also use the parallelism again to

measure the membership. The characteristics of f2 are the same as f1, so the exponential

function is taken to describe this membership 2

2
ik I

f e


 , of which, K2 is the personal

preference coefficient in deployment.

On the basis of above definition, we create a model for task placement and scheduling based

on virtual machines, which can be expressed as follows:
4

1

4

1 2 0

1

min ()

[() ()] 0 1, (1,2,3,4)

i i i

i

i i i

i

Time ComputationTime SwitchTime ComTime SysnTime

f I f I f I i





   

     





 (8)

We assure that this model should first satisfy the personal preference f0, and then reduce the

overall time from all layers as much as possible to obtain the maximum matching degree

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1553

between the feature of tasks and the architectures of computing systems. Our methodology for

task placement and scheduling should decrease overall time, improve resource utilization and

maintain loads balance with accuracy and effectiveness.

5. The algorithms design

5.1 The workflow of task placement and scheduling

Task placement and scheduling in virtual computing systems are a tow-down workflow and

the steps of them are as follows:

(1) The feature model is perfected and the data chains in serial computing are mined.

(2) The placement of units to threads, the mapping from threads to virtual machines and the

scheduling of virtual machines in physical machines are finished. Thus, we obtain the

hierarchical of task placement and scheduling in Fig. 2. Firstly, the relationships among units

in feature model are determined and these units are gathered into some Threads (Layer1 in Fig.

2) to finish task placement. Tasks among Threads communicate with each other by using

shared memory. Secondly, Threads are gathered into several VMs and we run a middleware in

each VM to coordinate these Threads. Tasks among VMs communicate with each other by

using authorized page (Layer2 in Fig. 2).Thirdly, VMs are gathered into several PMs and VMM

runs in each host to coordinate their VMs. Tasks among PMs communicate with each other by

using network protocols (Layer3 in Fig. 2). And finally, PMs are connected into a

VirtualCluster(Layer4 in Fig. 2).

Middleware

... ...
Middleware

...VM VM

VMM
PM

Middleware

... ...
Middleware

...VM VM

VMM
PM...

VirtualCluster

Fig.2 Four layers in task placement and scheduling based on virtual machines

ThreadThread ThreadThread ThreadThread ThreadThreadLayer1

Layer2

Layer3

Layer4
Fig. 2. Four layers in task placement and scheduling based on virtual machines

(3) The layers are connected. Middleware, connecting threads and VM, does not only

complete the scheduling of threads, but also complete the communication and synchronization

of tasks in external VMs [62]. VMM, connecting VM and PM, does not only complete the

scheduling of VMs, but also complete the communication and synchronization of the tasks in

external PMs. Network protocols, connecting all PMs, is responsible for the communication

and synchronization with the tasks in this cluster.

5.2 The algorithms for task placement and scheduling

We design a task scheduling alogrithm (TSA) in this section, and TSA composes of two
subalgorithms: VPVM and TEVM. According to the steps in the workflow of task placement
and scheduling, the tasks are gathered into four layers via TPVM firstly. We require to fully
consider the Gathered Degree of these layers in TPVM.

Definition 8 (Gathered Degree): Gathered Degree, a clustering criterion, gathers the tasks

in top layers of virtual computing systems into the tasks in low layers. Gathered Degree can be

measured by quantitative data, and its field belongs to (0,1). Based on the layers of task

1554 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

placement and scheduling, Gathered Degree can be divided into Threads Gathered Degree: π,

VM Gathered Degree ξ, and PM Gathered Degree ς.

According to the model shown in formula (8), we set the Gathered Degree π,ξ,ς to

aggregate the tasks into different layers, named as the scheme of task placement. We call the

scheme with the maximum matching degree between the feature of tasks and the architectures

as the optimal scheme. We first assign the subtasks in FM.Units to threads, in which, the initial

Threads Gathered Degree π0 should enable the system produce moderate number of threads.

When we map the threads into virtual machines, the initial VM Gathered Degree ξ0 assures

that the quantity of virtual machines should be greater than that of physical machines. When

we schedule the virtual machines into physical machines, the initial PM Gathered Degree ς0

assures that the quantity of physical machines should be equal to or less than that of hosts in

real cluster, and we determine the deployment of virtual machines in physical machines in

final. A heuristic algorithm to solve the optimal scheme for task placement based on virtual

machines (TPVM) is presented in following pseudo-code:

Algorithm1:TPVM

Input：FM; Q1,Q2,Q3; f0 ,K1 ,K2; Psysn1~4,Pcom1~4,Pswitch1~4 //feature model, configuration of

hosts, coefficient of designer’s preference, coefficient of switching time

Output：threads, VMs, PMs; // the description of tasks in all layers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Determine the initial Gathered Degree π0, ξ0, ς0 and step0 using FM, Q1, Q2, Q3;

minTime←0; step←step0;

π←π0; While(π>0){

Thread threads[];foreach (unit in FM.units) {compute_gather_unit (threads, unit, π);}

ξ←ξ0; While(ξ>0){

VM VMs[];foreach (thread in threads) {compute_gather_thread (VMs, thread, ξ);}

ς←ς0; while(ς>0){

PM PMs[];foreach (VM in VMs) {compute_gather_VM (PMs, VM, ς);}

Compute I1, I2, I3, I4 using threads, VMs, PMs by formula (6);

Compute f1,f2 by K1 ,K2

if (
4

1 2 0

1

[() ()]i i

i

f I f I f


 ) {

Compute ComputeTime using FM,threads, Q1, Q2, Q3;

Compute SysnTime1,2,3,4 using threads, VMs, PMs , Psysn1~4,by formula (3);

Compute ComTime1,2,3,4 using threads, VMs, PMs, ,Pcom1~4 by formula (4);

Compute SwitchTime1,2,3,4 using threads, VMs, PMs, ,Pswitch1~4 by formula (5) ;

Compute
4

1

()i i i

i

Time ComputationTime SwitchTime ComTime SysnTime


   

 if(CompareLower (minTime,Time)>0) ; { minTime←Time;

4

0 0 1

(1). (1). ()
n n

j j i i i

j j i

MD V unit V unit SwitchTime ComTime SysnTime
  

        ;

SaveMinTimeData(threads,VMs,PMs, π,ξ, ς, minTime,MD); }

} π-←step ;} ξ-←step; } ς -←step;}

 getMinTimeData (threads,VMs,PMs, π,ξ, ς, minTime, MD);

check whether minTime, MD can satisfy requirements;

 if(minTime, MD satisfy requirement){

connect FM,threads,VMs,PMs; return threads,VMs,PMs ;}

 Else { Determine initial Gathered Degree π0, ξ0, ς0 and step0 using π,ξ, ς,step; goto ;}

 End.

Fig. 3. The description of TPVM

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1555

In above TPVM algorithm, the function of compute_gather_unit is to gather a unit in FM to

a dynamic array threads, and then compute the Gathered Degree π between unit and threads.

If π is greater than its criterion π0, then, this unit is merged into current element in threads.

Otherwise, a new element will be created and added into threads, and unit is merged into this

new element, then, this new element is set as current element in next round. The functions of

compute_gather_thread and compute_gather_VM are the same as compute_gather_unit.

TPVM changes the initial Gathered Degree π0, ξ0, ς0 according to step0, and in different π, ξ, ς,

personal preference f is computed. If the constraint can be satisfied via the judgement of f, the

running time and matching degree are determined to compare with the value in the last round,

and then, obtain the optimal solution of them in step0. If the optimal solution in step0 can not

satisfy the requirement of designer, the initial Gathered Degreeπ0, ξ0,, ς0 and step0 should be

changed until the designer finds out the most satisfactory solution. The function of

CompareLower is to compare the values of two time, the function of SaveMinTimeData is to

save the computing results, and the function of getMinTimeData is to get the minimum time

from computing results. We can obtain the relative optimal solution via π, ξ, ς by changing

their step with progressive iterations,so the algorithm TPVM can be convergence to find out

the optimal scheme of task placement in accordance with the model in a sense.
Let n be the quantity of units, m be the quantity of threads, l be the quantity of virtual

machines, and k be quantity of physical machines. We suppose TPVM can complete in a group
of determined π0,ξ0,ς0 and step0. In order to calculate the complexity of TPVM in this
situation,we firstly determine the complexity of rows 3-20. Because the steps’number of
compute_gather_unit (threads, unit, π) is m,the steps’number of compute_gather_thread
(VMs, thread, ξ) is l,the steps’number of compute_gather_VM (PMs, VM, ς) is k, and the
steps’number in rows 17-19 is (π0/step0) (ξ0/step0)(ς0/step0),then,the steps’number in rows
7-19 is ((π0/step0)(ξ0/step0)(ς0/step0)+k).l.ς0/step0,the steps’number in rows 5-19 is [((π0/step0)
(ξ0/step0)(ς0/step0)+k).l.ς0/step0+l].m.ξ0/step0, and the steps’number in rows 3-20 is
{[((π0/step)(ξ0/step)(ς0/step)+k).l.ς0/step+l].m.ξ0/step+m}.n.π0/step. Furthermore, we
determine the steps of getMinTimeData (threads,VMs,PMs, π,ξ, ς, minTime, MD) in row 21 as
(π0/step) (ξ0/step)(ς0/step),and the steps’number in other rows can be thought as O(1). Then,
the steps’number in rows 1-26 is:

2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0

6 3 2 6

. . (1)
.

l m n klmn lmn mn lmn
C

step step step step step

           
   

As a result, the complexity of TPVM is

2 2 2

0 0 0

6
()

lmn
O

step

  
.

Property 1 (The iterative property of TPVM): For any value of Time，if both sides of its

minimum value exist the iterations, then TPVM would be monotonic in both sides of the

minimum Time, and while its corresponding maximum MD would also be monotonic in its

both sides. We explain this property as follows: Based on the expression of Time, after we

change π, ξ, ς with progressive step and complete the aggregation of layers by three functions:

compute_gather_unit,compute_gather_thread, compute_gather_VM ,the sum of time from

SysnTime1,2,3,4, ComTime1,2,3,4, SwitchTime1,2,3,4 would also change with the progressive

iterations.This property enables the Time present monotonically decreasing in its left of the

minimum value and monotonically increasing in the right of its minimum value. Based on the

expression of MD, we see that MD has the opposite monotonic property as Time.
TPVM, as a problem solving algorithm for task placement scheme, lays out a solid basis for

tasks execution based on virtual machine. When TPVM is performed in a virtualized platform,
the output of TPVM are taken as the input of tasks execution. The return values from TPVM

1556 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

are three arrays: threads[],VMs[], PMs[].The elements of them are:
thread=(units[],VM),VM=(threads[],PM),PMs=(VMs[]),which represent the clustering
results of tasks in four layers. Based on FM, threads[],VMs[], PMs[], the tasks execution
algorithm based on virtual machines(TEVM) is shown in algorithms 2.

Algorithm 2：TEVM
Input: FM, threads[],VMs[], PMs[];
Output: running result

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Determine the begin_unit and end_unit from FM

Let task= begin_unit;

Let return_List be an array to store the return data of tasks.

Execute(task);

Function Execute(task){

If (task is not end_unit++){

 input_data=obtainInputData(FM,task,return_List);

 loadTask(task, input_data); // loadTask is defined as asynchronous function

 Determine next_tasks[] in FM via task;

 Foreach(next_task in next_tasks[]){ Execute(next_task); }

 Else{Find the return_data of task from return_List as running result; }}

Function obtainInputData (FM,task, return_List){

Let isAllReceived=false;

Extract data_items that task require to take as input data in FM;

While(isAllReceived ==false){

isAllReceived =CheckDataValue(data_items);

If(isAllReceived==true){

 Find input_data of task from return_List via data_items;return input_data }

} Else{ Sleep to wait;}}}

Function CheckDataValue(data_items){

Let count=0;

Foreach(data_item in data_items){

 Find data_value of data_item from return_List;

 If(data_value!=null){ count++;}}

If(count== data_items.Length) return true; else return false;}

Function loadTask(task, input_data){

Determine the thread,VM,PM that begin_unit from threads[],VMs[],PMs[];

send message to VM to query the Status of VM ;

 if(VM has not been created){ Create VM in PM;}

 if(thread has not been created){ Create thread in VM;}

 Load task in VM thread via input_data ;

 receive return_data from task;

 Add return_data into return_List;}

Fig. 4. The description of TEVM

TEVM algorithm requires finishing the data transmitting, task loading and task switching.

TEVM composes of four functions, which find out the initial task named as begin_unit and
ending task named as end_unit from FM first, and then define the middle variables task and
return_List. Then, the algorithm begins with begin_unit and performs the scheduling with the
function Execute() until end_unit finishes its computation. The algorithm tidies the data in
return_List as running result. In row 5-11, we define Execute() as a recursive calling. The task,
as the current unit, obtains the input data of tasks via the function obtainInputData() and loads
the task via the function loadTask(), and then finds out the set of tasks next_tasks extended by

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1557

the time-relationship of them. In row 12-19, obtainInputData(), as the function to obtain input
data of task , judges whether all input data data_items exist in return_List via the sub function
CheckDataValue(). If the values in data_items are existed, the input_data is constructed and
return back. Otherwise, the system sleeps for a short time until the data arrive. In rows 20-25,
the function CheckDataValue() is defined. It traverses the values in data_items to judge
whether the values in return_List are null for corresponding items. The values for items in
return_List are constructed by the return values from frontier tasks determined by
time-relationship. In rows 26-33,loadTask() has implemented the loading of task. It first
determines the thread,VM and PM that the task exists.In this function, the message is sent out
to VM to query the status of VM. And if VM has not been created in PM, the VM would be
created. In the same way, the thread is created in VM, and then the task is loaded into the
thread to execute. The return values of task are obtained and added into return_List.

Let the average quantity of data flows for each unit be p. We require to compute the
complexity of four functions to calculate the complexity of TEVM in this situation. The
complexity of recursive function Execute(task) be nlog2n. Row 23 do transverse the
return_List, so this row’s steps’ number is p.n, and the the steps of function
CheckDataValue(data_items) is p. p.n. The steps’ number of obtainInputData() is equal to
that of CheckDataValue().Because the complexity of function loadTask is O(m.l.k) and the
steps’ number of row 9 is n, we get the complexity of TEVM

as :
2 2 2 2 2

2 2 2(p n m.l.k n)n (p 2)n .p nlog n log n C log n     .As a result, in the best case,

the complexity of TPVM is
2 2

2O(p n)log n .

6. Experiments analysis

CloudSim is used as the experimental platform to test TSA. CloudSim, developed by The
Gridbus Project at the University of Melbourne, provides a generalized and extensible
simulation framework that enables modeling, simulation, and experimentation of emerging
virtualized infrastructures and application services, allowing users to focus on specific system
design issues that they want to investigate, without getting concerned about the low level
details related to cloud-based infrastructures and services.The CloudSim toolkit supports both
system and behavior modeling of cloud system components, such as data centers, task
scheduling, virtual machines and resource provisioning policies.

We install CloudSim toolkit in a PC host of one Intel Xeon 3.40GHz processor with two
cores, 2GB RAM and 160GB SCSI hard disk. The processor brings a 16KB cache and 1024KB
secondary cache. The operation system installed in this machine is Windows Server 2003.
CloudSim toolkit requires a Java development Kit (JDK). We install jdk1.6.0 in Windows
Server 2003 and set the environment path for CloudSim2.1.1, which is the edition we select for
the experiments. Our experiments under CloudSim platform are divided into three experiments
to achieve three goals: 1) to evaluate the effectiveness of time estimated method for tasks in
feature model and lay out a basis to verify the correctness of task placement and scheduling
algorithms. 2) to verify the characteristics of TPVM algorithm and solve the problem in the
task placement and scheduling model. 3) to compare the performance of VSA algorithm with
other similar algorithms.

6.1 The experiment 1

In order to verify the effectiveness of time estimated method, we extend CloudSim, and then
make experiment 1 to evaluate the theoretical values with the values in practice.

(1) CloudSim toolkit extension

1558 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

The best task scheduling algorithms implemented in present distributed systems are DLS
and HEFT, which schedule the tasks via DAG. We create these two algorithms in the
open-source of CloudSim. In the implementation of DLS and HEFT algorithms, a new class
Cloudet_task extended from Cloudlet of CloudSim is desgined, and a variable taskAmount is
added as the member of itself to describe the task’s amount. Meanwhile, the setter and getter
functions are created for Cloudet_task.

Most of the present static task scheduling algorithms implement the scheduling from tasks
to processor, and not related to virtual machines. In order to solve this problem to adapt to the
requirement of virtual machines scheduling, we make some special transfers in virtualized
platform to implement these algorithms. We create a new class VirtualMachine_CPU
extended from class VirtualMachine, and add the calling setCpus(1) into its constructor. In
this approach, we create the same quantity of virtual machines as that of CPUs in host. When
the tasks are scheduled to virtual machines, the occupation to a CPU by a virtual machine
refers to a task scheduling to a CPU,

The class DatacenterBroker in CloudSim does the task scheduling to virtual machines. For
a task, the function bindCloudletToVM(int cloudletId,int vmId) in DatacenterBroker would
bind the task labeled as cloudletId into the virtual machine labeled as vmId. In order to
implement the task scheduling to CPUs, a new function bindCloudletToCPU(Cloudet_task[]
cloudlet_tasks,VirtualMachine_CPU[] vm_cpus) is designed to bind multiple tasks to
corresponding multiple CPUs.

Besides to them, a new class Statistics with the function execute () is designed to record the
time expenditure of DLS and HEFT in CloudSim. Based on the task amount, execute()
function aims to sum the switching time, communication time, synchronization time,
computation time and other time, and finally the total time of them in scheduling algorithms.

 (2)The input data of experiment

unit8

unit20unit19

unit10unit9

unit45

unit34unit33

unit22unit21

Fig.5 Feature model of CFIE

unit46

unit11

unit24unit23

unit13unit12

unit49

unit38unit37

unit25

unit36

unit48 unit50

unit26

unit15unit14

unit51

unit41unit40

unit28unit27

unit47

unit2unit1

unit57unit56

unit4unit3

unit55

unit35 unit42

unit29

unit53

unit30

unit18unit17

unit54

unit44unit43

unit32unit31

unit59

unit7

unit52

unit5 unit6

unit16

unit58

unit39

Fig. 5. Feature model of CFIE

Combined with description of tasks, we take a simulation of cold flow impulsive

experiment for a car engine (CFIE), the typical coupling process considering the affecting
relations between flow field and structure, as an instance to analyze the TPVM algorithm.
CFIE, a collaborative computing task, constitutes of 59 units after we determine its
requirement combined with the descriptions of feature model, threads, virtual machines and
physical machines. We set the numbers to them and determine their timing-relationships, and
then the feature model of CFIE is shown in Fig. 5 (Because of inconvenience in drawing the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1559

figure, we just display the data flows and omit the control flows and the description of
units).We determine the elements in feature model: unit=(Feature, CFs, IDFs ,ODFs,
SCs,time) and create a FM=(Units, controlflows, dataflows). The time in each of unit in
FM.Units is estimated as 15000~20000 millisecond .

The configuration data of this experiment: We use 2, 4, 6 and 8 hosts in this computing
platform, and each machine owes a CPU with two cores. Because the quantity of virtual
machines is equal to the quantity of CPU, the quantity of virtual machines is set as 2, 4, 6 and
8.

(3)The experimental results

(a) The Sum of SwitchTime (b) The Sum of ComTime

(c) The Sum of SysTime (d) The Sum of ComputationTime

(e) Sum of OtherTime (f) The Sum of TotalTime

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

2 4 6 8

 D L S S i m u t a t i o n

 H E F T S i m u t a t i o n

 C o m p u t a t i o n

t i m e

 n o d e s
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 6 0 0 0

2 4 6 8

 D L S S i m u t a t i o n

 H E F T S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

2 4 6 8

 D L S S i m u t a t i o n

 H E F T S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

2 4 6 8

 D L S S i m u t a t i o n

 H E F T S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

2 4 6 8

 D L S S i m u t a t i o n

 H E F T S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

2 4 6 8

 D L S S i m u t a t i o n

 H E F T S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

(millisecond)

Fig. 6. The compasion of DLS,HEFT simulation time with computation time

We develop the simulation code in CloudSim, including the initiation of Gridsim library, the

creation of data center, the construction of a Broker, the creation of virtual machines, the
creation of tasks, the submission of tasks, task scheduling, starting the simulation, the data
statistics, ending the simulation and outputting the results.

Based on the speed of CPU and the tasks’ amount inputted into above DLS and HEFT
algorithms, we estimate the computation time via related time estimated method in current
research literature [66] and assign it into the Unit.time. Based on the computation time of tasks,

1560 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

the formulas (3-5) in this paper are taken to compute the switching time, communication time
and synchronization time.

Based on the steps described in above text, the experiment 1 is running for five times. The
statistics results are taken to average their values. By comparing the experimental results of
algorithms in CloudSim simulation and the results of our time estimated methods presented in
this paper, the results are shown in Fig. 6, in which, the trend of the time in DLS algorithm,
HEFT algorithm and our theoretical computation can be seen clearly. We show the sum of
SwitchTime, the sum of ComTime, the sum of SysTime, the sum of ComputationTime, the Sum
of OtherTime and the Sum of TotalTime in four layers in Fig. 6 (a)-(f).

It is shown from Fig. 6 (a) that the switching time estimated by our method is almost
overlapping with the switching time in DLS and HEFT algorithms. Fig. 6 (b)and (c) show that
the communication time and synchronization time estimated by our method close to the
communication time and synchronization time in DLS algorithm. Fig. 6 (d) shows that the
tasks computation time estimated by our method closes to the tasks computation time in HEFT
algorithm. Since our method does not compute other time, but besides such four kinds of time,
there may exist other time in practice. Fig. 6 (e) shows that the other time in DLS and HEFT
algorithm experiments is not zero, but the values of them are small and could be neglected
when comparing with the sum of total time in Fig. 6 (f). It is seen from Fig. 6 (f) that the
estimated time in our study is in-between the sum of five kinds of statistics time in DLS and
HEFT algorithms, which are not greater than 5% of them.

It is concluded from Fig. 6 that the time sourcing from our estimated method and the time of
DLS and HEFT algorithms have greater than 95% similarity. It has proved the effectiveness
and the meaningfulness of our time estimated method. Therefore, the feature model presented
in this study can use this estimated time as the input data to perform a static task placement and
scheduling in TPVM. We further discuss the execution of TPVM and perform the experiments
in CloudSim in next section.

6.2 The experiment 2

TPVM algorithm is developed in the source of CloudSim to extend the function of platform,
thus, to verify the properties of TPVM.

(1) The TPVM algorithm implementation
In the implementations of TPVM, three new classes Cloudet_unit, Cloudet_thread and

Cloudet_FM extended from Cloudet is designed, and the tuple of Unit, Cloudet_unit[],and the
tuple of FM are added into these classes as the members of themselves. At the same time, the
setter and getter methods are designed to set and get the values of them. Then, a new class
Parameter is designed with the members Q1,Q2,Q3 ,f0,K1 ,K2, Psysn1~4, Pcom1~4, Pswitch1~4 to
load the input values of TPVM algorithm, and the setter and getter methods are designed to set
and get the values of them again.

The single task scheduling method bindCloudletToVM (int cloudletId, int vmId) requires
changing as the multiple tasks scheduling method to implement the task scheduling to virtual
machines, which is the same as the design of class DatacenterBroker_CPU. We design a new
class DatacenterBroker_FourLayers extended from DatacenterBroker, whose function
bindCloudletToFourLayers(Cloudet_FM fm, Parameter para) implements TPVM algorithm
to solve the problem in the model of task placement and scheduling based on virtual
machines.

(2) The input data of TPVM
In order to verify the convergence property and the rationality of VPTA, we continue to take

the data of 59 subtasks in project CEIE as the testing data. Two steps in below section were
made to verify the rationality of TPVM. Our experiments aim to determine the effect that
physical configuration and personal preference have on the convergence of TPVM.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1561

Ⅰ) The coefficient of personal preference f0 is set as 0.6, and the quantity of computing

nodes in a cluster is set as 2, 4, 6, 8 respectively, of which, each node has a CPU with two
cores.

Ⅱ) We have 4 computing nodes in a cluster and each node has a CPU with two cores. The

coefficient of personal preference f0 in applications development and deployment is set as 0.6,
0.5, 0.4, and 0.3 respectively.

Besides to those, K1 and K2 in such two steps of experiment are both set as 0.2,Psysn1~4 ,
Pcom1~4 and Pswitch1~4 are all set as 1.

(3) The experimental results
When the input parameters of TPVM algorithm are fixed, (eg. FM,K1,K2,Psysn1~4,

Pcom1~4,and Pswitch1~4) , the relative optimal solution is necessity to depend on Q1,Q2,Q3 and

f0. As a heuristic algorithm,the nature of TPVM aims to find a relative optimal scheme for task

placement and scheduling through enough progressive iterations. For any group of the values

in stepⅠand stepⅡ, these iterations will begin with π0, ξ0, ς0, and end to solve Time and MD

satisfying constraint in accordance with step0. In those iterations, based on the property of

TPVM, we compare their computing results with pairwise comparison, thus the minimum

Time and the maximum MD are inevitable to check out.

StepⅠanalyzes the trend of Time and MD with the iterations under the condition of

different physical configurations, and the laws of them are shown in Fig. 7 and Fig. 8. We can

see from the result that TPVM could find out the optimal solution for any group of physical

configuration and the optimal solution is in the lowest point of any of such four Time curves or

the highest point of any of such four MD curves, which are consistent with the iterative nature

of TPVM. The curves in Fig. 7 have verified that Time present monotonic in both sides of the

minimum Time, and Fig. 8 has verified that MD present monotonic in both sides of the

maximum MD. Different physical configurations would lead to different iterations required to

find out their optimal solutions. We set the quantities of computing nodes are 2, 4, 6 and 8

respectively, thus, when the iterations of them reach to 2101, 1609, 1410 and 1202, we get

their relative solutions. The more the quantity of computing nodes are, the less are the

iterations for TPVM to come to their lowest running time and highest matching degree,

because strong hardware configuration would make the aggregation of four layers easier. It is

seen from Fig. 7 that more quantity of computing nodes in a cluster would produce a lower

value in the minimum Time, because strong physical configuration would lead to a less time in

synchronization, communication and switching in four layers, so the running time of 8

computing nodes in a cluster are less than that of 2, 4 and 6 computing nodes in a cluster. It is

shown from Fig. 8 that physical configuration almost has no effect on the maximum MD:

different physical configurations would produce the same maximum MD inbetween 0.7~08.

The expression of MD demands TPVM obtain the optimal scheme for task placement and

scheduling in any physical configuration environment, so the same maximum MDs in

different parameters shows that we have gotten the optimal scheme. It is also seen from this

experiment that the deviation of different matching degrees is less than that of running time in

different physical configurations. The MD curves in Fig. 8 compact with each other inbetween

0.28~0.77, but the Time curves in Fig. 7 are dispersed very much. It is concluded that the

matching degree does not depend on the physical configurations, but the physical

configuration has a great effect on the running time of virtual computing systems.

1562 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

150

200

250

300

350

400

450

500

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300

2 machines Time(s)

4 machines Time(s)

6 machines Time(s)

8 machines Time(s)

time

Iterations

Fig. 7. The trend of Time in different physical configurations (millisecond)

0.20

0.30

0.40

0.50

0.60

0.70

0.80

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300

2 machines MD

4 machines MD

6 machines MD

8 machines MD

Iterations

MD

Fig. 8. The trend of MD in different physical configurations

StepⅡanalyzes the trend of Time and MD with the iterations under the condition of

different personal preferences, and the laws of them are shown in Fig. 9 and Fig. 10. We can

see from the result that TPVM could find out the optimal solution for any group of personal

preference and the optimal solution is in the lowest point of any of such four Time curves or in

the highest point of any of such four MD curves, which are consistent with the iterative nature

of TPVM. The curves in Fig. 9 have also verified that Time present monotonic in both sides of

the minimum Time, and Fig. 10 has also verified that MD present monotonic in both sides of

the maximum MD. Different personal preferences would lead to different iterations required to

find out their optimal solutions. We set f0 as 0.6, 0.5, 0.4, and 0.3 respectively, thus, when the

iterations of them reach to 1202, 1398, 1610 and 2108, we get their relative solutions. The

bigger f0 is, the less the iterations are for TPVM to come to their lowest running time and

highest matching degree, because bigger personal preference coefficient would make the

aggregation of our layers easier. It is seen from Fig. 9 that a smaller f0 for designers would

enable a higher value of the minimum Time, because the higher parallelism of tasks would

produce a smaller ComputationTime in Time. It is also shown from Fig. 10 that personal

preference almost has no effect on the maximum MD: different personal preferences would

produce the same maximum MD inbetween 0.7~0.8. This conclusion is similar to the result of

experiment 1. It is also seen from this experiment that the deviation of matching degrees is less

than that of running time in different personal preferences. The MD curves in Fig. 10 compact

with each other inbetween 0.25~0.74, but the Time curves in Fig. 10 are dispersed very much.

It is concluded that the matching degree does not depend on the personal preferences, but the

personal preference has a great effect on the running time of virtual computing systems.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1563

250

300

350

400

450

500

550

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300

f0=0.6 Time(s)
f0=0.5 Time(s)
f0=0.4 Time(s)
f0=0.3 Time(s)

time

Iterations

Fig. 9. The trend of Time in different personal preferences (millisecond)

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300

f0=0.6 MD

f0=0.5 MD

f0=0.4 MD

f0=0.3 MD

Iterations

MD

Fig. 10. The trend of MD in different personal preferences

It is concluded from above experiment that TPVM algorithm can find out a group of π,ξ,ς to

promote the value of Time come to their minimum value and MD come to their maximum

value for any personal preference and physical configuration, so the TPVM algorithm is

feasible to implement task placement and scheduling. Based on the results of such two

experiments, we set the personal preference coefficient f0 as 0.4 in CFIE, then, four hosts are

used to develop and deploy this application(each node has a CPU with two cores). We run our

program of algorithm TPVM to get the optimal scheme of task placement and scheduling

shown in Fig. 11. It is seen from Fig. 11 that 59 units are assigned to 14 threads, of which,

thread1 and thread2 are mapped into VM1, thread3 and thread4 are mapped into VM2,

thread5 and thread6 are mapped into VM3, thread7 and thread8 are mapped into VM4,

thread9 and thread10 are mapped into VM5, thread11 and thread12 are mapped into VM6, and

thread13 and thread14 are mapped into VM7.Then, VM1 and VM2 are scheduled into PM1,

VM3 and VM4 are scheduled into PM2, VM5 and VM6 are scheduled into PM3,and VM7 is

scheduled into PM4.

Based on the layers of task placement and scheduling shown in Fig.11, we have developed

the application of CFIE by implementing parallel algorithm. The application would be taken

to deploy according to the workflow in Fig.11. It is shown that TPVM can improve the

matching degree between tasks and architectures to raise the peak performances of clusters

and satisfy the requirement of designers in applications development and deployment. In this

section , experiment 2 has verified the effectiveness of our heuristic task placement and

scheduling alogorithm.

6.3 The experiment 3

1564 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

8

2019

109

45

3433

2221

46

11

2423

1312

49

3837

25

36

48 50

26

1514

51

4140

2827

47

21

5756

43

55

35 42

29

53

30

1817

54

4443

3231

59

7

52

5 6

16

58

Middleware
VM1

VMM
PM1

VirtualCluster

Fig.11 CFIE task placement and scheduling based on virtual machines in four layers

Layer1

Layer2

Layer3

Layer4

39

Middleware
VM2

Middleware
VM3

VMM
PM2

Middleware
VM4

Middleware
VM5

VMM
PM3

Middleware
VM6

Middleware
VM7

VMM
PM4

thread1

b

e

thread3thread2 thread7thread6thread5thread4 thread8 thread10 thread11 thread12 thread13 thread14thread9

Fig. 11. CFIE task placement and scheduling based on virtual machines in four layers

In order to compare the TSA algorithm with the most popular and best task scheduling

algorithms: DLS, HEFT, CPOP and LMT, we implement them in this section.
(1) The algorithms implementation
The implementation of CPOP and LMT is the same as DLS and HEFT. The implementation

of TSA is as follows: On the basis of designing the new classes
Cloudet_unit,Cloudet_thread,Cloudet_FM and DatacenterBroker_FourLayers, Stastics in
above section, according to results of TPVM, an new function executeCloudletInFourLayers
(Cloudet_FM fm, Threads, VirtualMachineList VMs, host[] PMs) is added into the class
DatacenterBroker_FourLayers to implement the TEVM. Thus, we construct TSA in CloudSim.

(2) The input data of algorithms
We extend the CFIE project to make the experiment, and the quantity of subtasks is set as

70, 82, 90, and 105. We suppose that the system composes of enough hosts that the experiment
requires, and each host has a CPU with two cores. In TPVM algorithm, the time estimated
values in FM has been inputted into TPVM. As TPVM could optimize the task placement, we
could find out the optimal threads’ quantity, optimal VMs’ quantity, and optimal PMs’
quantity. In order to ensure the comparability between TSA and DLS, HEFT, CPOP and LMT
in virtualized data center, the four algorithms should use the same hosts as that TSA algorithm
produces, and ensure the same quantity of CPUs. DLS, HEFT, CPOP and LMT algorithms
take DAG as the input data.

(3) The experiment result
We make the simulation code and run the program. After inputting the tasks with 59, 70, 82,

90, and 105 subtasks respectively into TSA algorithm, the best quantity of physical machines
determined by TPVM for task scheduling are 4, 6, 7, 8 and 10. DLS, HEFT, CPOP and LMT
algorithms also adopt 4, 6, 7, 8 and 10 physical machines respectively. We run the algorithms
for five times and average their values. The comparison of five algorithms in performance is
shown in Fig. 12. We list the sum of SwitchTime, the Sum of ComTime, the sum of SysTime,
the Sum of ComputationTime, the sum of OtherTime and the sum of TotalTime in four layers
in Fig. 12 (a)-(f).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1565

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

5 9 7 0 8 2 9 0 1 0 5

T S A D L S H E F T

C P O P L M T

t i m e

t a s k s

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

5 9 7 0 8 2 9 0 1 0 5

T S A D L S H E F T

C P O P L M T

t i m e

t a s k s

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

4 5 0 0 0

5 9 7 0 8 2 9 0 1 0 5

T S A D L S H E F T

C P O P L M T

t i m e

t a s k s
0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

5 9 7 0 8 2 9 0 1 0 5

T S A D L S H E F T

C P O P L M T

t i m e

t a s k s

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

5 9 7 0 8 2 9 0 1 0 5

T S A D L S H E F T

C P O P L M T

t i m e

t a s k s

(a) The Sum of SwitchTime (b) The Sum of ComTime

(c) The Sum of SysTime (d) The Sum of ComputationTime

(e) The Sum of OtherTime (f) The Sum of Total Time

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

5 9 7 0 8 2 9 0 1 0 5

T S A D L S H E F T

C P O P L M T

t i m e

t a s k s

(millisecond)

Fig. 12. The comparison of the performance for five algorithms

It is shown from Fig. 12 (a) and (c) that, for parallel tasks with different subtasks, the

switching time and communication time in TSA algorithm are less than those in present four
algorithms, especially in switching time. With the increase of subtasks, the synchronization
time in DLS, HEFT, CPOP and LMT increases rapidly, but such time in TSA algorithm
presents the trend of slow increase. Fig. 12 (b) show that the communication time in TSA
algorithm is less than that of DLS,CPOP and LMT, and it is also less than that of FEFT,
especically when there are more subtasks. And meanwhile, we see that the communication
time in TSA algorithm presents the trend of slow increase. Fig. 12 (d) shows that, the
computation time in TSA algorithm is almost the same as that of DLS, HEFT, CPOP and LMT.
With the increase of the quantity for tasks, the computation time in DLS, HEFT and LMT
presents the trend of slow increase. And only when the quantity of physical machines
increases, such time in CPOP algorithm decreases slowly. Fig. 12 (e) shows that the other
time in TSA algorithm is shorter than that in other algorithms and it can almost be neglected.
The other time in CPOP and LMT decreases ,but such time in DLS and HEFT increases with
the increase of quantity of subtasks. Fig. 12 (f) shows that, the total time of TSA algorithm is
the shortest in five algorithms, the next one is DLS, and the last one is LMT. The total time of
TSA algorithm is 5%~8% shorter than that in DLS, and is 15~20% than LMT.

1566 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

We analyze the data in Fig.12 further to exact the key data items in its subfigures. After
tiding the data, we calculate the weights of the computation time in total time for five
algorithms in the quantities of subtasks being 59,70,82,90 and 105 respectively. The result is
shown in Fig. 13.

64.00%

66.00%

68.00%

70.00%

72.00%

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

59 70 82 90 105

TSA

DLS

HEFT

CPOP

LMT

tasks

percent

Fig. 13. The weight of computing time in total time for five algorithms

It is shown from Fig. 13 that, for parallel computing tasks with different subtasks, the

weight of computation time in total time in TSA algorithm is greater than that in DLS, HEFT,
CPOP and LMT algorithms. The weight in TSA algorithm is about 83~85%. We also see that
different quantities of subtasks woud lead to slight change of the weight. The weight in HEFT
algorithm is above 75%~83%. But different quantities of subtasks lead to great change of
weight in DLS, HEFT, CPOP and LMT algorithms. For example, for DLS algorithm, the
weights are 81.56% and 71.83% for 59 subtasks and 105 subtasks, and the distance of them
closes to 10%. The data show that TSA can utilize and allocate the resources in systems to
tasks more efficiently than other algorithms, so it has the lowest time expenditure of all.

The experimental results show that the performance of TSA algorithm is better than other
algorithms to solve the problem of task placement and scheduling based on virtual machines.
Our algorithm reduces the time expenditure in four layers greatly and implements the balance
among layers. The computation time of TSA algorithm is not much shorter than other
algorithms, and the decrease of the total time is completed mainly by reducing the time in
switching, communication and synchronization. The TSA algorithm has reduced the other time
expenditure in addition to such four kinds of time via task scheduling in four layers. TSA
algorithm has a better performance for most of the indexes, especially the running time, so we
think that it is better than other four algorithms in virtualized platform.

7. Conclusions and suggestions

7.1 Conclusions

This paper presents a model for task placement and scheduling in the virtualized high

performance computing environment. We introduce the virtualization technology into the

clusters and study a methodology for task placement and scheduling based on virtual machines.

The shortcomings of related work are summarized to present two problems: the performance

of systems and the convenience in applications development and deployment. We describe the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1567

tasks via the thought of feature model to formalize the work of task placement and scheduling.

We can find out the highest matching degree between the feature of tasks and the architectures

of computing systems via the model of task placement and scheduling. The steps of the

workflow and the algorithms of task placement and task execution are designed to obtain the

optimal scheme based on the constraint. It is concluded from the experiments that : (1) The

estimated time is very close to the actual running time in our study, and the experimental work

show the effectiveness of the time estimation approach. (2) TPVM algorithm can be

convergence within prescribed limits and obtain the optimal solution for any group of physical

configuration or personal preference, which shows that it is feasible and reasonable for us. (3)

The weight of computation time in total time for TSA algorithm is less than those in other four

algorithms, so it is better than other four algorithms in performance.Therefore, the optimal

task placement and scheduling based on virtual machines can satisfy the requirements of task

scheduling in different layers of virtual computing systems to improve their performances.

7.2 Suggestions

Our methodology provides a thought to solve the problems of low performance in clusters and

the inconvenience in applications development and deployment. The proposed solution allows

users to specify customized constraints for task placement and scheduling. However, there still

existed some questions that requires us to do in future:

(1) It is a relatively complex problem for task placement and scheduling based on virtual

machines. The unresolved problems are algorithms of task placement and scheduling oriented

changing requirements and the construction of feature model for undetermined tasks [63]. We

would further discuss these problems in future.

(2) The experimentation of this paper is based on a simulation enviroment CloudSim, so we

can not make a conclusion that the proposed solution is also actually converge fast enough in a

large-scale real clusters. Our methodology might require to make some adjustments to adapt to

large-scale HPC platforms which compose of thousands of cores. Therefore, the task

placement and scheduling problem is even more challenging in those platform. We will verify

the feasibility of our thought in large-scale cluster systems in future work.

(3) Our study assumes that the parallel applications have no real-time constraints, so the

proposed solution could not be applied to the prediction application with time constraints. But

there are many parallel applications having real-time constraints in current virtualized

environments, so the model of task placement and scheduling meeting real-time requirements

should be considered in next stage.

Acknowledgement

We thank the State 863 projects of China (No. 2007AA010305) and the excellent doctor

degree dissertation fund of Xi’an University of Technology (No.102-211007) for supporting

this research. Moreover, we thank for the editors of TIIS and the anonymous reviewers for

their helpful suggestions on the quality improvement of our present paper.

References

[1] E. Strohmaier, J.J. Dongarra, H.W. Meuer, H.D. Simon, “Recent Trends in the Marketplace of High

Performance Computing,” Parallel Computing, vol. 31, no.3-4, pp. 261-273, Mar. 2005, Article

(CrossRef Link)

[2] S.L. Scott, G. Vallée, T. Naughton, H. Ong, “System-level Virtualization Research at Oak Ridge

http://dx.doi.org/doi:10.1016/j.parco.2005.02.001
http://dx.doi.org/doi:10.1016/j.parco.2005.02.001

1568 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

National Laboratory,” Future Generation Computer Systems, vol. 26, no. 3, pp. 304-307, Mar. 2009.

[3] J.P. Walters, V. Chaudhary, M. Cha, et al, “A Comparison of Virtualization Technologies for HPC,”

in Proc. of 22nd International Conference on Advanced Information Networking and Applications,

pp. 2-5, Mar. 2008,. Article (CrossRef Link)

[4] T.S. Somasundaram, B.R. Amarnath, el al, “CARE Resource Broker: A Framework for Scheduling

and Supporting Virtual Resource Management,” Future Generation Computer Systems, vol. 26, no.

3, pp. 337-347, Mar. 2010 . Article (CrossRef Link)

[5] M. Šušteršič , D. Mramor, J. Zupan, “Consumer Credit Scoring Models with Limited Data,” Expert

Systems with Applications, vol. 36,no. 3, pp. 4736-4744, Apr. 2009 . Article (CrossRef Link)

[6] Q. Li, J. Huai, J. Li,et al, “ HyperMIP: Hypervisor Controlled Mobile IP for Virtual Machine Live

Migration across Networks,” in Proc. of High Assurance Systems Engineering Symposium, pp. 3-5,

Aug. 2008. Article (CrossRef Link)

[7] D.A. Grove, P.D. Coddington, “Modeling Message-passing Programs with a Performance

Evaluating Virtual Parallel Machine,” Performance Evaluation, vol. 60, no. 1-4, pp. 165-187, May

2005. Article (CrossRef Link)

[8] F. Ortin, J.M. Redondo, J.B.G. Perez-Schofield, “Efficient Virtual Machine Support of Runtime

Structural Reflection,” Science of Computer Programming, vol. 74, no. 10, pp. 836-860, Aug. 2009.

Article (CrossRef Link)

[9] M. Bellato, R. Isocrate, G. Meng,e tc al, “Remoting Field Bus Control by Means of a PCI

Express-based Optical Serial Link,” Nuclear Instruments & Methods in Physics Research, vol. 570,

no. 3, pp. 518-524, Aug. 2007. Article (CrossRef Link)

[10] S. Fu, “Failure-Aware Resource Management for High-Availability Computing Clusters with

Distributed Virtual Machines,” Journal of Parallel and Distributed Computing, vol. 70, no. 4, pp.

384-393, Apr. 2010. Article (CrossRef Link)

[11] T. Giorgino, M.J. Harvey, G. de Fabritiis, “Distributed Computing as a Virtual Supercomputer:

Tools to Run and Manage Large-scale BOINC Simulations,” Computer Physics Communications,

vol. 181, no. 8, pp. 1402-1409, Mar. 2010. Article (CrossRef Link)

[12] S.-M. Lee,D.-G. Kim, D.-R. Shin, “General Purpose Hardware Abstraction Layer for Multiple

Virtual Machines in Mobile Devices,” in Proc. of International Conference on Advanced

Communication Technology, pp. 15-18, Feb. 2009. Article (CrossRef Link)

[13] M. Arnold, S.J Fink, D. Grove, M. Hind, P.F. Sweeney, “A Survey of Adaptive Optimization in

Virtual Machines,” in Proc. of the IEEE Special Issue on Program Generation,Optimization,and

Adaptation, vol. 93, no. 2, pp. 449-466, June 2005. Article (CrossRef Link)

[14] K. Wang, A. Chang, L.V. Kale, J.A. Dantzig, “Parallelization of a Level Set Method for Simulating

Dendritic Growth,” Journal of Parallel and Distributed Computing, vol. 66, no. 11, pp. 1379-1386,

Nov. 2006. Article (CrossRef Link)

[15] A. Acharya, N. Banerjee, D. Chakraborty, et al, “Programmable Presence Virtualization for

Next-Generation Context-based Applications,” in Proc. of 2009 IEEE International Conference on

Pervasive Computing and Communications, pp. 9-13, Mar. 2009. Article (CrossRef Link)

[16] S.K. Nair, P.N.D. Simpson, B. Crispo, A.S. Tanenbaum, “A Virtual Machine Based Information

Flow Control System for Policy Enforcement,” Electronic Notes in Theoretical Computer Science,

vol. 197, no. 1, pp. 3-16, Feb. 2008. Article (CrossRef Link)

[17] J. Wiegert, G. Regnier, J. Jackson, “Challenges for Scalable Networking in a Virtualized Server,” in

Proc. of 16th International Conference on Computer Communications and Networks, pp. 13-16,

Aug. 2007. Article (CrossRef Link)

[18] B. Li, J. Shu, W. Zheng, “Design and Implementation of a Storage Virtualization System Based on

SCSI Target Simulator in SAN,” Tsinghua Science & Technology, vol. 10, no. 1, pp. 122-127, Jan.

2005. Article (CrossRef Link)

[19] X. Wanga, Z. Dua,Y. Chenb, S. Lia, “Virtualization-based Autonomic Resource Management for

Multi-tier Web Applications in Shared Data Center,” Journal of Systems and Software, vol. 81, no. 9,

pp. 1591-1608, Sep. 2008. Article (CrossRef Link)

[20] D. Gmach, J. Rolia, L. Cherkasova, A. Kemper, “Resource Pool Management- Reactive versus

Proactive or Let’s be Friends,” Computer Networks, vol. 53, no. 17, pp. 2905-2922, Dec. 2009.

http://dx.doi.org/doi:%2010.1109/AINA.2008.45
http://dx.doi.org/doi:10.1016/j.future.2009.10.005
http://www.sciencedirect.com/science/journal/09574174
http://www.sciencedirect.com/science/journal/09574174
http://dx.doi.org/doi:10.1016/j.eswa.2008.06.016
http://dx.doi.org/doi:10.1109/HASE.2008.19
http://dx.doi.org/doi:10.1016/j.peva.2004.10.019
http://dx.doi.org/doi:10.1016/j.scico.2009.04.001
http://dx.doi.org/doi:10.1145/1103900.1103901
http://dx.doi.org/doi:10.1016/j.jpdc.2010.01.002
http://dx.doi.org/doi:%2010.1016/j.cpc.2010.04.007
http://dx.doi.org/doi:10.1145/224056.224075
http://dx.doi.org/doi:%2010.1109/JPROC.2004.840305
http://dx.doi.org/doi:10.1016/j.jpdc.2006.02.005
http://dx.doi.org/doi:10.1109/PERCOM.2009.4912747
http://dx.doi.org/doi:10.1016/j.entcs.2007.10.010
http://dx.doi.org/doi:10.1109/ICCCN.2007.4317816
http://dx.doi.org/doi:10.1016/S1007-0214(05)70018-3
http://dx.doi.org/doi:10.1016/j.jss.2007.11.719

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1569

Article (CrossRef Link)

[21] A. Mtibaa, B. Ouni, M. Abid, “An Efficient List Scheduling Algorithm for Time Placement

Problem,” Computers & Electrical Engineering, vol. 33, no. 4, pp. 285-298, July 2007. Article

(CrossRef Link)

[22] K.G. Kakoulis, I.G. Tollis, “Algorithms for the Multiple Label Placement Problem,” Computational

Geometry, vol. 35, no. 3, pp. 143-161, Oct. 2006. Article (CrossRef Link)

[23] M. Fazlali, M. Sabeghi, A. Zakerolhosseini, K. Bertels, “Efficient Task Scheduling for Runtime

Reconfigurable Systems,” Journal of Systems Architecture, vol. 56, no. 11, pp. 623-632, Nov. 2010.

Article (CrossRef Link)

[24] Y.-S. Dai , G. Levitin, X. Wang, “Optimal Task Partition and Distribution in Grid Service System

with Common Cause Failures,” Future Generation Computer Systems, vol. 23, no. 2, pp.2 09-218,

Feb. 2007. Article (CrossRef Link)

[25] H.J. Siegel, S. Ali , “Techniques for Mapping Tasks to Machines in Heterogeneous Computing

Systems,” Journal of Systems Architecture , vol. 46, no. 8, pp. 627-639, June 2000. Article

(CrossRef Link)

[26] T.D. Braun, H.J. Siegel, A.A. Maciejewski, Y. Hong, “ Static Resource Allocation for

Heterogeneous Computing Environments with Tasks Having Dependencies, Priorities, Deadlines,

and Multiple Versions,” Journal of Parallel and Distributed computing, vol. 68, pp. 11, pp.

1504-1516, Nov. 2008. Article (CrossRef Link)

[27] J.-K. Kim, S. Shivle, H.J. Siegel, et al, “Dynamically Mapping Tasks with Priorities and Multiple

Deadlines in a Heterogeneous Environment,” Journal of Parallel and Distributed Computing, vol.

67, no. 2, pp. 154-169, Feb. 2007. Article (CrossRef Link)

[28] Y.-K. Kwok, A.A. Maciejewski, H.J. Siegel, I. Ahmad, A. Gharfoor, “A Semi-static Approach to

Mapping Dynamic Iterative Tasks onto Heterogeneous Computing Systems,” Journal of Parallel

and Distributed Computing, vol. 66, no. 1, pp. 77-98, Jan. 2006. Article (CrossRef Link)

[29] M. Moore, “An Accurate Parallel Genetic Algorithm to Schedule Tasks on a Cluster,” Parallel

Computing, vol. 30, no. 5-6, pp. 567-583, May 2004. Article (CrossRef Link)

[30] Sau-Ming Lau,Qin Lu,Kwong-Sak Leung, “Adaptive load distribution algorithms for heterogeneous

distributed systems with multiple task classes,” Journal of Parallel and Distributed Computing, vol.

66, no. 2, pp. 163-180, Feb. 2006. Article (CrossRef Link)

[31] ZhuHai,Wang Yu-ping, “Constrained Multi-objective Grid Task Security Scheduling Model and

Algorithm,” Journal of Electronics & Information Technology, vol. 32, no. 4, pp. 988-992, Mar.

2010. Article (CrossRef Link)

[32] James Broberg, Zahir Tari, Panlop Zeephongsekul, “Task assignment with work-conserving

migration,” Parallel Computing, vol. 32, no. 11-12, pp. 808-830, Dec. 2006. Article (CrossRef

Link)

[33] Laura Gilbert, Jeff Tseng, Rhys Newman, etc, “Implications of virtualization on Grids for high

energy physics applications,” Journal of Parallel and Distributed Computing, vol. 66, no. 7, pp.

922-930, July 2006. Article (CrossRef Link)

[34] Yong Liao, Dong Yin, Lixin Gao, “Network virtualization substrate with parallelized data plane,”

Computer Communications, vol. 34, no. 13, Aug. 2011. Article (CrossRef Link)

[35] Flavio Lombardi, Roberto Di Pietro, “Secure virtualization for cloud computing,” Journal of

Network and Computer Applications, vol. 34, no. 4, July 2011. Article (CrossRef Link)

[36] Michail D. Flouris, Renaud Lachaize, Konstantinos Chasapis, Angelos Bilas, “Extensible

block-level storage virtualization in cluster-based systems,” Journal of Parallel and Distributed

Computing, vol. 70, no. 8, pp. 800-824, Aug.2010. Article (CrossRef Link)

[37] Mohammad I. Daoud, Nawwaf Kharma, “A high performance algorithm for static task scheduling in

heterogeneous distributed computing systems,” Journal of Parallel and Distributed Computing, vol.

68, no. 4, pp. 399-409, April 2008. Article (CrossRef Link)

[38] J.H. Abawajy, “Adaptive hierarchical scheduling policy for enterprise grid computing systems,”

Journal of Network and Computer Applications, vol. 32, no. 3, pp. 770-779, May 2009. Article

(CrossRef Link)

[39] Matthew Witten, “The role of high performance computing in medicine and public health,” Future

http://dx.doi.org/doi:10.1016/j.comnet.2009.08.011
http://dx.doi.org/doi:10.1016/j.compeleceng.2007.02.005
http://dx.doi.org/doi:10.1016/j.compeleceng.2007.02.005
http://dx.doi.org/doi:10.1016/j.comgeo.2006.03.005
http://dx.doi.org/doi:10.1016/j.sysarc.2010.07.016
http://dx.doi.org/doi:10.1016/j.future.2006.05.002
http://dx.doi.org/doi:10.1016/S1383-7621(99)00033-8.
http://dx.doi.org/doi:10.1016/S1383-7621(99)00033-8.
http://dx.doi.org/doi:10.1016/j.jpdc.2008.06.006
http://dx.doi.org/doi:10.1016/j.jpdc.2006.06.005
http://dx.doi.org/doi:10.1016/j.jpdc.2005.06.015
http://dx.doi.org/doi:10.1016/j.parco.2003.12.005
http://dx.doi.org/doi:10.1016/j.jpdc.2004.01.007
http://dx.doi.org/doi:10.1016/j.future.2008.09.002
http://dx.doi.org/doi:10.1016/j.parco.2006.09.005
http://dx.doi.org/doi:10.1016/j.parco.2006.09.005
http://dx.doi.org/doi:10.1016/j.jpdc.2005.12.013
http://dx.doi.org/%20doi:10.1016/j.comcom.2010.07.027
http://dx.doi.org/doi:10.1016/j.jnca.2010.06.008
http://dx.doi.org/doi:10.1016/j.jpdc.2010.03.001
http://dx.doi.org/doi:10.1016/j.jpdc.2007.05.015
http://dx.doi.org/doi:10.1016/j.jnca.2008.04.009
http://dx.doi.org/doi:10.1016/j.jnca.2008.04.009

1570 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

Generation Computer Systems, vol. 10, no. 2-3, pp. 223-232, June 1994. Article (CrossRef Link)

[40] Hung-Ming Chen, Yu-Chin Lin, “Web-FEM: An internet-based finite-element analysis framework

with 3D graphics and parallel computing environment,” Advances in Engineering Software, vol. 39,

no. 1, pp. 55-68, Jan. 2008. Article (CrossRef Link)

[41] Tevfik Kosar, Miron Livny, “A framework for reliable and efficient data placement in distributed

computing systems,” Journal of Parallel and Distributed Computing, vol. 65, no. 10, pp. 1146-1157,

Oct. 2005. Article (CrossRef Link)

[42] B. Hamidzadeh, L.Y. Kit, D.J. Lilja, “Dynamic task scheduling using online optimization,” IEEE

Trans. Parallel Distrib. Syst., no.11, pp. 1151–1163, Nov. 2000. Article (CrossRef Link)

[43] S. Bansal, P. Kumar, K. Singh, “Dealing with heterogeneity through limited duplication for

scheduling precedence constrained task graphs,” J. Parallel Distrib. Comput, no. 65, pp. 479-491,

Apr. 2005. Article (CrossRef Link)

[44] [W.F. Boyer, G.S. Hura, “Non-evolutionary algorithm for scheduling dependent tasks in distributed

heterogeneous computing environments,” J. Parallel Distrib. Comput., no. 65, pp. 1035-1046, Sep.

2005. Article (CrossRef Link)

[45] E. Ilavarasan, P. Thambidurai, R. Mahilmannan, “Performance effective task scheduling algorithm

for heterogeneous computing system,” in Proc. 4th International Symposium on Parallel and

Distributed Computing, France, pp. 28-38, July 2005. Article (CrossRef Link)

[46] J. Kim, J. Rho, J.-O. Lee, M.-C. Ko, , “CPOC: Effective static task scheduling for grid computing,”

in Proc. 2005 International Conference on High Performance Computing and Communications,

Italy , pp. 477-486, Apr. 2005. Article (CrossRef Link)

[47] Xiangzhen Kong, ChuangLin, YixinJiang,et al, “Efficient dynamic task scheduling in virtualized

data centers with fuzzy prediction,” Journal of Network and Computer Applications, pp. 1068-1077

July 2010. Article (CrossRef Link)

[48] A. Iosup, C. Dumitrescu, D. Epema, H. Li, L. Wolters, “How are real grids used? The analysis of

four grid traces and its implications,” in Proc. 7th IEEE/ACM International Conference on Grid

Computing, Spain, pp. 262-269, Sep. 2006. Article (CrossRef Link)

[49] H. Topcuoglu, S. Hariri, M.Y. Wu , “Performance-effective and low-complexity task scheduling for

heterogeneous computing,” IEEE Trans. Parallel Distrib. Syst. no. 13, pp. 260-274, Mar. 2002.

Article (CrossRef Link)

[50] S. Bansal, P. Kumar, K. Singh, “An improved duplication strategy for scheduling precedence

constrained graphs in multiprocessor systems,” IEEE Trans. Parallel Distrib. Syst. no. 14, pp.

533-544, june 2003. Article (CrossRef Link)

[51] A.Y. Zomaya, Y.H. Teh , “Observations on using genetic algorithms for dynamic load balancing,”

IEEE Trans. Parallel Distrib. Syst., no. 12, pp. 899-911, Sep. 2001. Article (CrossRef Link)

[52] S. Baskiyar, C. Dickinson, “Scheduling directed a-cyclic task graphs on a bounded set of

heterogeneous processors using task duplication,” J. Parallel Distrib. Comput., no. 65, pp. 911–921,

Aug. 2005. Article (CrossRef Link)

[53] J. Grefenstette, Rank-based selection, in: T. Back, D.B. Fogel, Z. Michalewicz, “Handbook of

Evolutionary Computation, first ed,” Oxford Univ. Press, pp. 241-246,1997

[54] A. Radulescu, A.J.C. van Gemund , “Low-cost task scheduling for distributedmemory machines,”

IEEE Trans. Parallel Distrib. Syst., no. 13, pp. 648-658, Sep. 2002. Article (CrossRef Link)

[55] M. Wu, D. Dajski, “Hypertool: A programming aid for message passing systems,” IEEE Trans.

Parallel Distrib. Syst., no. 1, pp. 330-343, July 1990. Article (CrossRef Link)

[56] S. Nesmachnow, H. Cancela, E. Alba, “Heterogeneous computing scheduling with evolutionary

algorithms,” Soft Computing-A Fusion of Foundations, Methodologies and Applications, vol. 15, no.

4, pp. 685-701, Apr. 2010. Article (CrossRef Link)

[57] P. Phinjaroenphan, S. Bevinakoppa, P. Zeephongsekul, “A method for estimating the execution time

of a parallel task on a grid node,” Lecture Notes in Computer Science, vol. 3470, pp. 226-236, Jan.

2005. Article (CrossRef Link)

[58] M.A. Iverson, F. Ozguner, L. Potter, “Statistical prediction of task execution times through analytic

benchmarking for scheduling in a heterogeneous environment,” IEEE Trans. Comput., pp.

1374-1379, Apr. 1999. Article (CrossRef Link)

http://dx.doi.org/doi:10.1016/0167-739X(94)90021-3
http://dx.doi.org/doi:10.1016/j.advengsoft.2006.12.001
http://dx.doi.org/doi:10.1016/j.jpdc.2005.04.019
http://dx.doi.org/%20doi:10.1109/71.888636
http://dx.doi.org/doi:10.1016/j.jpdc.2004.11.006
http://dx.doi.org/doi:10.1016/j.jpdc.2005.04.017
http://dx.doi.org/doi:10.1109/ISPDC.2005.39
http://dx.doi.org/doi:10.1016/j.jpdc.2007.05.015
http://dx.doi.org/doi:10.1016/j.jnca.2010.06.001
http://dx.doi.org/doi:10.1109/ICGRID.2006.311024
http://dx.doi.org/doi:10.1109/71.993206
http://dx.doi.org/doi:10.1109/TPDS.2003.1206502
http://dx.doi.org/doi:10.1109/71.954620
http://dx.doi.org/doi:10.1016/j.jpdc.2005.01.006
http://dx.doi.org/doi:10.1145/1089008.1089010
http://dx.doi.org/doi:10.1109/71.80160
http://dx.doi.org/doi:10.1007/s00500-010-0594-y
http://dx.doi.org/DOI:2010.1007/11508380_24
http://dx.doi.org/doi:10.1109/12.817403

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011 1571

[59] G.C. Sih, E.A. Lee, “A compile-time scheduling heuristic for interconnectionconstrained

heterogeneous processor architectures,” IEEE Trans. Parallel Distrib. Syst., no. 4, pp. 175-187, Feb.

1993. Article (CrossRef Link)

[60] H. El-Rewini, T.G. Lewis, “Scheduling parallel program tasks onto arbitrary target machines,” J.

Parallel Distrib. Comput., no. 9, pp. 138-153, June 1990. Article (CrossRef Link)

[61] S.V. Kumar, C.D. Peters-Lidard, Y. Tian, etc, “Land information system: An interoperable

framework for high resolution land surface modeling,” Environmental Modelling & Softwar, vol. 21,

no. 10, pp. 1402-1415, Feb. 2006. Article (CrossRef Link)

[62] Deshi Ye, Guochuan Zhang, “On-line scheduling of multi-core processor tasks with virtualization,”

Operations Research Letters, vol. 38, no. 4, pp. 307-311, July 2010. Article (CrossRef Link)

[63] Katia Leal, Eduardo Huedo, Ignacio M. Llorente, “A decentralized model for scheduling

independent tasks in Federated Grids,” Future Generation Computer Systems, vol. 25, no. 8, pp.

840-852, Sep. 2009. Article (CrossRef Link)

XiaoJun Chen, male, doctoral student. He was born in GuiLin city, GuangXi province,

P.R. China in September, 1980. He received bachelor degree in Department of Industrial

Engineering of Xi'an University of Technology in 2004 and the master degree in School of

Economics and Management of Xi'an University of Technology in 2009.He entered into

School of Computer Science and Engineering of Xi'an University of Technology to learn

about distributed computing technology in 2008. He engaged in software development job

from September 2004 to September 2006 in Delta. Software Company. He has published 8

papers since 2006, and the representatives are as follows: Resource Allocation and

Adjustment with Genetic Algorithm in Virtual Computing Systems, ICIC Express

Letters,2010;Empirical research on quality supervision elements of cooperative

manufacturing process in virtual enterprise, ICPOM, 2008 ;Research on quality supervision

model for cooperative manufacturing preparing process in virtual enterprise,

ICRMEM,2008;et al . Now he is engaged in the researches of virtual technology and cloud

computing. XiaoJun Chen is now a member of IEEE Computer Society. E-mail:

army.net@163.com

Jing Zhang, male, doctor, professor, doctoral supervisor. He was born in BaoJi city,

ShaanXi, province, P.R.China in November, 1952. He received bachelor degree in

Department of Automatic Control of Xi'an University of Technology in 1981, the master

degree in Department of Software and Theory of Xi'an JiaoTong University in 1986, and the

doctor degree in Department of Systems Engineering of Xi'an JiaoTong University in 1994.

He has worked in Department of Computer of Xi'an University of Technology since 1977,

and now is a professor and the PhD supervisor of School of Computer Science and

Engineering, Xi'an University of Technology. Of which, he worked in Computer Training

Center of Ministry of Education, PR,China in 1982 for a short time. He has published 60

papers and hosted 20 research projects in recent 10 years, of which, completed 4 the State

863 projects. He has published 4 books, of which, representatives are Artificial intelligence

basis(Electronic Industry Press ,BeiJing,2000), Practical Course on Computer

Network(Electronic Industry Press ,BeiJing,2007) and Computer Network(Xidian

University Press,Xi'an,Shaanxi, 2007). Recently he concentrates on the researches of

distributed system, virtualization , grid computing and cloud computing. Dr. Jing Zhang is

now one of the national key new product projects consultants and a Xi'an Information

technology consultant. He is also a ShaanXi manufacturing Informatization expert, the

member of Services Computing Professional Committee in China Computer Federation,

member of E-Government and Office Automation Committee in China Computer

Federation, the evaluation expert of National Natural Science Foundation and the member of

IBM Software Innovation Center Expert Committee.E-mail: zhangjing@xaut.edu.cn.

(Corresponding author)

http://dx.doi.org/doi:10.1109/71.207593
http://dx.doi.org/doi:10.1016/0743-7315(90)90042-N
http://dx.doi.org/doi:10.1016/j.envsoft.2007.05.012
http://dx.doi.org/doi:10.1016/j.orl.2010.04.002
http://dx.doi.org/doi:10.1016/j.future.2009.02.003.

1572 Chen et al.: A Methodology for Task placement and Scheduling Based on Virtual Machines

JunHuai Li, male, doctor, professor, master supervisor. He was born in BaoJi city,

ShaanXi, province, P.R.China in November, 1969. He received bachelor degree in

Department of Computer Science and technology of Xi'an University of Technology in

1994 ,the master degree in Department of Computer Application of Xi'an University of

Technology in 1997, and the doctoral degree in Department of Software and Theory of NPU

in 2002. He made a cooperation research in university of Tsukuba, Japan in 2004. He has

worked in Department of Computer Science and Engineering of Xi'an University of

Technology since 1997, and now is an professor and a master supervisor of School of

computer science and engineering, Xi'an University of Technology. He is also the dean of

Department of Computer Science and Technology and the dean of Network and Information

Management Center. He has published 40 papers and hosted 12 research projects in recent

10 years, of which, completed 4 the State 863 projects. He has published 3 books, of which,

representatives are Practical Course on Computer Network(Electronic Industry

Press ,BeiJing,2007) and Computer Network(Xidian University Press,Xi'an,Shaanxi, 2007)

and Network Security Technology (Xidian University Press,Xi'an,Shaanxi, 2010).He is

engaged in the researches of network computing, distributed computing internet technology,

RFID technology and web data mining.Dr JunHuai Li is now a member of Chinese

Computer Society and also a member of IEEE. E-mail: lijunhuai@xaut.edu.cn.

