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Abstract 
 

Task placement and scheduling are traditionally studied in following aspects: resource 

utilization, application throughput, application execution latency and starvation, and recently, 

the studies are more on application scalability and application performance. A methodology 

for task placement and scheduling centered on tasks based on virtual machines is studied in 

this paper to improve the performances of systems and dynamic adaptability in applications 

development and deployment oriented parallel computing. For parallel applications with no 

real-time constraints, we describe a thought of feature model and make a formal description 

for four layers of task placement and scheduling. To place the tasks to different layers of 

virtual computing systems, we take the performances of four layers as the goal function in the 

model of task placement and scheduling. Furthermore, we take the personal preference, the 

application scalability for a designer in his (her) development and deployment, as the 

constraint of this model. The workflow of task placement and scheduling based on virtual 

machines has been discussed. Then, an algorithm TPVM is designed to work out the optimal 

scheme of the model, and an algorithm TEVM completes the execution of tasks in four layers. 

The experiments have been performed to validate the effectiveness of time estimated method 

and the feasibility and rationality of algorithms. It is seen from the experiments that our 

algorithms are better than other four algorithms in performance. The results show that the 

methodology presented in this paper has guiding significance to improve the efficiency of 

virtual computing systems. 
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1. Introduction 

In high performance computing, the large and complex applications are submitted to the 

clusters constituted of several computing nodes to execute parallel computing. The set of tasks 

from applications working in clusters depends on the underlying physical structures of 

hardware very much [1], so the designers are required to fully understand the characteristics of 

underlying physical structures. On one hand, the clusters can raise the speed of applications. 

But on the other hand, they greatly restrict the development progress and increase the running 

time of applications. When we need to extend the functions of applications or change the 

structures of clusters, the source codes of applications should be modified or rewritten with a 

great of work. As a result, the dynamic adaptability of applications are too weak to adapt to the 

change of requirements. Meanwhile, it is very difficult for traditional clusters to improve the 

resource utilization, maintain loads balance and realize the peak performances of systems.  

To solve above problems, the virtualization are taken to organize the resources in clusters. 

Researchers add a virtualization layer to the hardware to construct a virtual computing system. 

If we need to change the functions of applications or the structures of clusters, virtualization 

layer would greatly reduce the adjustment of source codes in applications development. Some 

researches focused on this area are as follows: (1) the performances of computing systems, 

management methods of resources [2][3] and fault-tolerant systems [4]; (2) parallel computing 

oriented multi-core processor [5][6]; (3) the applications of virtualization to high performance 

computing with more attention to message-driven, tasks mapping and dynamic load balance 

[7][8][9][10]; and (4) the deployment of virtualization to clusters with more stress on the 

design of VMM(virtual machines monitors) for high performance computing. These results 

show that we should make full use of advances of virtualization to implement resources 

integration and achieve a single system image with better transparency, compatibility and 

applicability [11] via the page-copy and migration. When we take present parallel 

programming model to develop the programs and then package them into virtual machines 

[12], VMM can adjust the deployment of virtual machines with dynamics to implement the 

optimization of resources and create an environment with scalable management based on the 

changing trend of loads in virtual machines [13]. The isolation and controllability of the virtual 

machines can improve IT security with vulnerability management [14]. The distributed 

memory virtualization [15], multiprocessor virtualization [16], I/O virtualization [17][18] and 

virtualization management [19][20] are studied to improve the efficiency of multiple virtual 

machines. It is concluded from theories and practice that the application of virtualization to 

high performance computing is necessary to lay out a solid foundation to the efficient 

operation of virtual computing systems in clusters.  

Task placement and scheduling are traditionally studied in following aspects: resource 

utilization, application throughput, task execution latency, and starvation [21][22][23]. The 

partition of a grid service task into subtasks and the distribution of them on available resources 

have great influence on the extent of the service reliability and profits [24]. Resource 

allocation in heterogeneous computing (HC) environments should match tasks with machines 

and schedule the tasks to assigned machines [25]. The mapping of tasks into the machines of a 

distributed HC environment has been an NP-complete problem [26]. To maximize the 

performance of the system, dynamic mapping is performed when the arrival of tasks is not 

known a priori. The goal of a dynamic mapping heuristic is to maximize the value accrued of 

completed tasks in a given interval of time [27]. In addition, the minimization of the execution 
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time for an iterative task requires an appropriate mapping scheme to match and schedule the 

subtasks to the processors. Some researchers implement and evaluate a semi-static 

methodology involving the on-line use of off-line-derived mappings. The off-line phase is 

based on a genetic algorithm (GA) to generate high-quality mappings for a range of values for 

the dynamic parameters [28]. However, recent breakthroughs in the mathematical estimation 

of parallel genetic algorithm parameters are applied to the NP-complete problem of scheduling 

multiple tasks to a cluster of computers connected by a shared bus [29]. Some researchers 

proposed a load distribution (LD) algorithm to achieve better system performance by 

smoothing out any workload imbalance that may exist in a distributed system [30]. 

After the virtualization is applied to clusters, the task placement and scheduling are very 

different from those in traditional clusters, and the focus is more on application scalability and 

application performance. Many studies have shown that the methodologies of task placement 

and scheduling not only can affect the applications development and deployment, but also 

have a great effect on the performances of systems [31][32]. There existed the problem of low 

peak performances in some high performance computing systems, because the features of 

applications do not match the architectures of computing systems. The excellent scheme of 

task placement and scheduling not only can reduce the running time of systems and maintain 

their loads balance [33][34][35], but also raise the peak performances of systems by improving 

their resource utilization. Task placement and scheduling, a vital technology to assist the 

efficient operation of systems, refer to decomposing the tasks into subtasks and then placing 

them to different layers of virtual computing systems based on the requirements of users [36]. 

The problems in system-level and application-level are solved respectively in traditional 

clusters, in which, the task placement and scheduling are generally completed by a 

management node based on their time-relationships in parallel and serial process, just 

considering the factors such as load balance in computing nodes. The shortage of systematic 

planning in synchronization, communication and switching enables the task placement and 

scheduling generally lack of accuracy and efficiency [37]. Few studies on task placement and 

scheduling based on virtual machines make us present a corresponding methodology centered 

on tasks, so we focus mainly on task placement and scheduling with virtualization techniques 

to improve the performance of systems. On the basis of fully considering the performances of 

virtual computing systems and the convenience in applications development and deployment, 

the top-down tasks decompositions and subtasks aggregations are used to complete the 

placement of subtasks to threads, the mapping from threads to virtual machines and the 

scheduling of virtual machines in physical machines. We define the problems in section 2 and 

make an overview of task scheduling algorithms in section 3, and then, construct an model of 

task placement and scheduling in section 4. Algorithms to solve the goal function in model and 

perform tasks execution are designed in section 5 and the experiments are made in section 

6.The last section concludes this paper. 

2. Problems definition 

The parallel applications with real-time constraints are out of the scope in this paper. Our study 

concentrates on the parallel applications without real-time constraints in virtualized high 

performance computing environments. We assume that virtual machines are scheduled by 

using the algorithms of the time slices rotation, such as Credit. Based on our assumption, the 

task placement and scheduling based on virtual machines require us to divide the tasks into 

subtasks.We construct some parallel layers in systems from the perspective of tasks to 

improve the efficiency of parallel computing and the convenience in developing and 
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deploying applications [38]. We should solve two problems as follows: What kind of  

methodologies for task placement and scheduling could maintain the loads balance and 

produce the minimum running time in clusters after virtualization? And what kind of 

methodologies for tasks decomposition could enable the development and deployment of 

applications more satisfy the requirements of designers? 

(1) The relationship between tasks decomposition  and performances is our first problem. 

For several subtasks implementing parallel computing, the running time are from the 

computation, synchronization, communication and switching of tasks [39].The switching time 

is decided by the quantity of subtasks and their scheduling algorithm. Generally, the fewer the 

granularities of subtasks are, the shorter is the time in synchronization, and the more the traffic 

information exists. In parallel layers of subtasks, the systems should consider four layers as 

follows: 1) If several subtasks are gathered into a thread, they can only execute in a serial way 

with no communication time, and their synchronization time is equivalent to the running time 

of frontier tasks. 2) If several subtasks run in a middleware with parallelism, the subtasks take 

a thread as a unit, whose performance depends on the communication and synchronization 

time among threads. As the middleware is running as a process in a virtual machine, we only 

need to install a middleware in a virtual machine. 3) If several subtasks run in a host with 

parallelism, the subtasks take a virtual machine as a unit, whose performance depends on the 

communication and synchronization time among virtual machines. 4) If several subtasks run 

in a cluster with parallelism, the subtasks take a host as a unit, whose performance depends on 

the communication and synchronization time among hosts. Let i be a layer number of the 

architecture in virtual computing systems, ComputationTime be the time from computation,  

SwitchTime be the time from switching of subtasks, ComTime be the time from 

communication, and SysnTime be the time from synchronization, thus, the overall time of four 

layers in virtual computing systems are:  
4

1

( )i i i

i

Time ComputationTime SwitchTime ComTime SysnTime


                (1) 

(2) The relationship between tasks decomposition  and the development and deployment of 

applications is our second problem. For several subtasks implementing parallel computing, the 

fewer the granularities of subtasks are, the easier the implementation of the parallelism is. 

When there existed more subtasks in applications [40][41], it would be difficult to develop and 

deploy the application because of the intensive control flows and data flows in parallel 

subtasks. In  parallel layers of subtasks, the systems should consider four layers as follows: 1) 

Several subtasks are gathered into a thread. They can be developed in the same way as the 

traditional single-threaded applications development,  and they can be deployed in the same 

way as the traditional single-threaded applications deployment. 2) If several subtasks run in a 

middleware with parallelism, they can be developed in the way of multithreaded 

applications.Meanwhile, we should solve the problem of the deployment of multi-threads 

application to the middleware and the problem of the deployment of middleware to the virtual 

machines. 3)If several subtasks run in a host with parallelism, they can be developed and 

deployed in the way of distributed applications with parallel computing. 4) If several subtasks 

run in a cluster with parallelism, we should maintain the loads balance. Let I1, I2, I3, I4 be the 

parallelisms in such four layers, f1(.) be the membership functions of applications development, 

f2(.) be the membership functions of applications deployment, thus, the utility value of four 

layers in virtual computing systems are: 
4

1 2

1
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f f I f I I i


                                     (2) 
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We think that the tasks decomposition  should base on the personal preference of a designer. 

On the basis of the designer’s personal preference being satisfied, the running time limites to 

the minimum level of utility value, so the problems of task placement and scheduling based on 

virtual machines are transferred as the problems of tasks decomposition and the mapping of 

subtasks to different layers of virtual computing systems. 

3. Task scheduling algorithms overview 

There are many task scheduling algorithms that schedule tasks to processors.In general, task 
scheduling is presented in two forms: static and dynamic [42]. In static scheduling algorithms, 
all information needed for scheduling, such as the structure of the parallel application, the 
execution times of individual tasks and the communication costs among tasks must be known 
in advance. Static task scheduling takes place during compilation time before running the 
parallel application. In dynamic scheduling, however, tasks are allocated to processors upon 
their arrival, and scheduling decisions must be made at run time [43][44][45][46]. Based on 
the challenges caused by the dynamicity of virtualization and the vagueness of availability 
requirements in the scheduling strategy of virtual data centers, some researchers have research 
on the efficient dynamic task scheduling in virtualized data centers with fuzzy prediction [47]. 
It is a dynamic algorithm to schedule tasks without dependence, and different from our 
problem.  

We design static task scheduling algorithm for the task placement and scheduling based on 
virtual machines. We select static task scheduling algorithm because many parallel 
applications have long execution times, and hence they require high quality task scheduler to 
minimize their running times. Additionally, the static scheduling time of several scientific and 
engineering applications is much lower than their run time on systems. For example, the 
execution times of more than 50% of the parallel applications that were run on four real 
parallel computing systems are between tens to thousands of minutes [48], while the static 
scheduling times of parallel applications with diverse characteristics, which were scheduled 
using several static scheduling algorithms, are lower than one second as shown in [49]. 

Static scheduling algorithms can be broadly classified into three main groups: heuristic 
algorithms, guided random algorithms and hybrid algorithms [49]. 

Ⅰ.Heuristic scheduling algorithms move from one point in the search space to another, 

following a particular rule. Such algorithms, though efficient, search some paths in the search 
space and ignore others [42][43]. Heuristic scheduling algorithms can be divided into three 
groups: list-based heuristics, clustering heuristics and duplication heuristics [49]. In list-based 
scheduling heuristics, each task is assigned a given priority. The tasks are inserted in a list of 
waiting tasks, such that tasks with higher priority are placed before those with lower priorities. 
Three steps are then repeated until all the tasks in the list are scheduled: task selection, 
processor selection and status update. Clustering heuristics trade off inter-processor 
communication overhead with parallelization by allocating heavily communicating tasks to 
the same processor. In such heuristics, the tasks are grouped into an unlimited number of 
clusters [49][50]. Duplication algorithms start by running a clustering or list based algorithm 
to create an initial schedule. This improvement in performance comes at the cost of increasing 
the complexity of scheduling process [41]. 

Ⅱ.Guided random scheduling algorithms mimic the principles of evolution and natural 

genetics to evolve near-optimal task schedules. Among the various guided random algorithms, 
Genetic Algorithms (GA) are the most widely used for the scheduling problem [19][53][55]. In 
attempts to obtain schedules of better quality, many well-known metaheuristics, including 
Simulated Annealing (SA) [53], Tabu Search(TS) [49][54], Artificial Immune System (AIS) 
[55], Ant Colony Ooptimization (ACO) [50], Particle Swarm Optimization (PSO) [56], 
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Simulated Annealing (SA) [34], Tabu search (TS) [57], and Variable Neighborhood Search 
(VNS) [35], have been adopted. However, GA usually takes more computing efforts to locate 
the optimal in the region of convergence [49], owing to the lack of local search ability. On the 
other hand, the trajectory method, such as VNS [36], has shown its potential in exploiting the 
promising regions in the search space with high quality solutions. Nevertheless, it is still prone 
to premature convergence traps due to the limited exploration ability. Thus, it’s a natural 
choice to consider the hybridization of metaheuristics, also named memetic algorithm (MA) in 
some literatures [53][58], which has been applied to solve scheduling problems [44]. 

Ⅲ. Hybrid scheduling algorithms. A hybrid scheduling algorithm combines both heuristic 

algorithms and GAs. The Genetic List Scheduling (GLS) algorithm [53] is an example of this 
class of algorithms, but it has greater complexity than other algorithms. 

Besides to those, there are also high efficient algorithms for the problem of task scheduling 
in heterogeneous distributed systems. Examples of these algorithms are: Dynamic Level 
Scheduling (DLS) [59], Heterogeneous Earliest Finish Time (HEFT) [49], and Critical Path 
on a Processor (CPOP) [49], Mapping Heuristic (MH) [60] and Levelized Min Time (LMT) 
[65].Where, DLS and HEFT algorithms are the improvement of heuristic scheduling 
algorithms. They are two of the best existing scheduling algorithms for heterogeneous 
distributed systems [49], and are employed as benchmark scheduling algorithms in many 
studies [52][54]. The DLS algorithm does not schedule tasks between two previously 
scheduled tasks. The HEFT starts by setting the computation costs of tasks and 
communication costs of edges to their mean values. Each task is assigned a value called 
upward rank. In this algorithm, the upward rank of a task is the largest sum of mean 
computation costs and mean communication costs along any directed path from this task to an 
exit task. 

Our task placement is a flow from top to down, so it is a clustering problem in essentially. 
For such a problem solving, heuristic algorithm should be selected and used in priority, 
because virtualization can shield the heterogeneity of processors. The complex algorithms in 
heterogeneous distributed systems, such as DLS, HEFT and so on, should be excluded. In three 
static task scheduling algorithms, heuristic algorithms require direct information about the 
application and processors to carry out scheduling. Despite the greedy nature, heuristic-based 
approaches are not likely to produce consistent results on a wide range of problems. The 
heuristic-based scheduling algorithms are always efficient since they narrow the search down 
to a very small portion of the solution space by means of greedy heuristics. The heuristic-based 
scheduling algorithms are always efficient since they narrow the search down to a very small 
portion of the solution space by means of greedy heuristics. 

The goals of task scheduling based on virtual machines are the shortest completion time 
based on users’ preferences. Our study is different from present task scheduling algorithms in 
following aspects: 

І. Our algorithm includes two parts. One of them is to make a scheme to plan the task 
placement and scheduling from the view of whole system. The other is to perform the 
scheduling based on the scheme, in which, current task is selected to decide the next tasks. 

Ⅱ. The tasks are combined by an optimal rule to form some suitable quantity of tasks in 

different layers from view of systematic clustering, so it is different from present static 
scheduling algorithms. 

Ⅲ. For collaborative subtasks with complicate interactive time-relationship, more other 

factors affecting task placement and scheduling should be considered, such as communication 
time, switching time, and synchronization time, and so on. 

Ⅳ. Some task scheduling algorithms just consider two layers including tasks and resources. 

The task scheduling based on virtual machines is divided into four layers including tasks, 
threads, virtual machines, physical machines in virtualized platform. Hierarchical aggregation 
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would transfer the tasks from top to underlying layer and let the tasks combine closely with 
each other. 

Ⅴ. Because of the data dependence among tasks, the algorithm requires to obtain the output 

data from frontier tasks and input them into latter tasks. 

4. The construction of model 

We describe the tasks in virtualized environment via a new descriptive methodology named 

feature model (FM), which lays out a solid foundation to develop the parallel applications. 

Combined with FM, the task placement and scheduling are performed with a high effective 

way. The model of task placement and scheduling takes FM to forecast the resource utilization, 

application throughput, application execution latency, and starvation. Thus,we need to 

speculate the performance and estimate the running time of applications considering the 

personnel preference in applications development and deployment. This model can help 

designers to make a good plan for task placement and scheduling in practice. 

4.1 The description of tasks 

Task placement and scheduling refer to the tasks decomposition and functions aggregation 

[61]. In order to map the subtasks to different layers of virtual computing systems, we analyze 

the features of subtasks in tasks decomposition  from the view of parallel computing, and then, 

take the hierarchical method to get their modest subtasks in their granularities from coarse to 

fine. Each of the subtasks can complete a certain functions (called function of feature in this 

paper).The relationships among units are further identified to create a feature model. 

Description 1 (unit): Unit, a subtask implementing the function of feature, is a tuple with 6 

elements unit=(Feature, CFs, IDFs ,ODFs,SCs,time).Where, Feature is the function of 

feature, CFs is the set of control flows, IDFs is the set of input data flows, ODFs is the set of 

output data flows, SCs is the set of outer interfaces, and time is the time of computation. A 

control flow is a tuple with 2 elements CF=(dataitems,type),of which, dataitems is the set of 

data items,and type is the type of this control flow with the values {sequence, 

ifoption,switch,cycle}. A data flow is a tuple with 3 elements DF=(dataitems, fromFeature, 

tofeature), of which, dataitems is the set of data items, fromFeature is the function of feature 

providing this data flow, and tofeature is the function of feature requesting this data flow. 

 

unita

uniteunitd

unitcunitb

unitm

unitjuniti

unitgunitf

f1 f2 f3 f4

f9f7

unith

unitl

f5

f10

f6

f12f11

f8

Fig.1 feature model 

unitn

f13

 
Fig. 1. Feature model 

 

Description 2 (FM): Feature model, a conceptual model of tasks, composes of units, control 
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flows and data flows. Fig. 1, as an instance of a feature model, is a tuple with 3 elements 

FM=(units, CFs, DFs), of which, units is the set of units,CFs is the set of control flows, and 

DFs is the set of data flows. In order to make the feature of tasks match the architectures, FM 

should be deployed into the layers of computing systems. FM is transferred as 

{Threads,VMs,PMs} though effective aggregation among layers. Where, Threads is the set of 

threads that units assign,VMs is the set of virtual machines that threads map to, and PMs is the 

set of physical machines that VMs  are scheduled to. 

Description 3 (TPSL): Task placement and scheduling layers are a tuple with 3 elements: 

TPSL=(FM,layers,Mappings), of which, FM is the feature model of a task, and layers is the set 

of layers in virtual computing systems. We let layers= (thread,VM,PM)，where, thread is the 

layer of thread, VM is the layer of virtual machine, and PM is the layer of physical machine. 

We let Mappings=(MT, MV, MP).Where, MT is the placement from units to threads: 

unit→thread, MV is the mapping from threads to virtual machines: thread→VM, and MP is 

the scheduling from virtual machines to physical machines:VM→PM. 

4.2 The model of task placement and scheduling 

For first problem presented in section 2, we determine the method for computing running time 

combined with the description of tasks based on formula (1). 

Definition 1 (SysnTime): synchronization time, a deviation between the maximum 

computation time and the minimum computation time in parallel subtasks, can be divided into 

the time inside threads: SysnTime1, the time among threads:SysnTime2, the time among virtual 

machines: SysnTime3, and the time among physical machines: SysnTime4. 

0

. [max( . ) min( . )]
l

i i k k

k

SysnTime Psysn task time task time


                    (3) 

Where, taskk is the one of unit,thread,VM,PM description, max(taskk.time) is the maximum 
computation time in parallel subtasks of systems, min(taskk.time) is the minimum computation 
time in parallel subtasks of systems, l is the quantity of parallel subtasks, and Psysni is the 
coefficient of synchronization time.  

Definition 2 (ComTime): communication time, the sum of time in tasks communication, 

can be divided into the time inside threads: ComTime1, the time among threads:ComTime2 ,the 

time among virtual machines:ComTime3, and the time among physical machines:ComTime4. 

0

. ( . . )
n

i i k

k

ComTime Pcom task ESs length


                                (4) 

Where,
iPcom  is the coefficient of communication time. 

Definition 3 (SwitchTime): switching time, the sum of switching time that underlying layer 

schedules the top layers, can be divided into the time inside threads:SwitchTime1, the time 

among threads: SwitchTime2,the time among virtual machines:SwitchTime3, and the time 

among physical machines:SwitchTime4. 

1 2 3

.( . )i
i

Pswitch tasks length
SwitchTime

Q Q Q
                                 (5) 

Where,
iPswitch  is the coefficient of switching time related to the architecture of computers,Q1 

is the quantity of physical machines,Q2 is the quantity of CPUs in a physical machines, and Q3 

is the quantity of cores in a CPU. 

Definition 4 (I): parallelism, the ratio of computation time between parallel computing and 

non-parallel computing in tasks, can be divided into the parallelism inside threads: I1(I1 is 1), 

the parallelism among threads: I2, the parallelism among virtual machines: I3, and the 
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parallelism among physical machine: I4. These parallelisms not only can affect the running 

time from synchronization, communication and switching, but also decide the matching 

degree between tasks and their architectures. The parallelism Ii is expressed as:  

0

0

.

.

m

j

j

i n

j

j

task time

I

task time












                                                     (6) 

Where,
jtask  is the parallel part of tasks in

jtask , n is the quantity of tasks, and m is the quantity 

of parallel tasks. 

Definition 5 (MD): the matching degree between tasks and their architectures reflects the 

overall performance in layers aggregation. In our study, the ratio between the computation 

time of pure tasks and running time of computation is taken as the matching degree: 

0

4

0 1

(1 ).

(1 ). ( )

n

j

j

n

j i i i

j i

V unit

MD

V unit SwitchTime ComTime SysnTime



 





   



 
             (7) 

Where, (1 ). jComputationTime V unit   ,and V is the satisfaction that Q1,Q2 and Q3  take to the 

quantity of threads caused by feature model aggregation, V[0,I2].In our study, let V be 

2 1 2 3

1 2 3
2 1 2 3 1 2 3

.

. . & 1
.

0

I Q Q Q threads length

Q Q Q
V I Q Q Q threads length Q Q Q

threads length

 


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
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For second problem presented in section 2, we determine the utility value of membership 

function based on formula (2). 

Definition 6 (f1): the development membership for applications designers refers to the 

personal preference and the acceptance for parallelism. We use the parallelism to measure the 

membership. Generally speaking, the higher the parallelism is, the more the subtasks are, thus, 

the smaller f1 is. The exponential function is taken to describe this membership, so 1

1
iK I

f e


 , 

of which, K1 is the personal preference coefficient in development. 

Definition 7 (f2): the deployment membership for applications designers refers to the 

personal preference and the acceptance for parallelism. We also use the parallelism again to 

measure the membership. The characteristics of f2 are the same as f1, so the exponential 

function is taken to describe this membership 2

2
ik I

f e


 , of which, K2 is the personal 

preference coefficient in deployment. 

On the basis of above definition, we create a model for task placement and scheduling based 

on virtual machines, which can be expressed as follows:  
4

1

4

1 2 0

1

min ( )

[ ( ) ( )] 0 1, (1,2,3,4)

i i i

i

i i i

i

Time ComputationTime SwitchTime ComTime SysnTime

f I f I f I i





   

     





         (8) 

We assure that this model should first satisfy the personal preference f0, and then reduce the 

overall time from all layers as much as possible to obtain the maximum matching degree 
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between the feature of tasks and the architectures of computing systems. Our methodology for 

task placement and scheduling should decrease overall time, improve resource utilization and 

maintain loads balance with accuracy and effectiveness. 

5. The algorithms design 

5.1 The workflow of task placement and scheduling 

Task placement and scheduling in virtual computing systems are a tow-down workflow and 

the steps of them are as follows: 

(1) The feature model is perfected and the data chains in serial computing are mined. 

(2) The placement of units to threads, the mapping from threads to virtual machines and the 

scheduling of virtual machines in physical machines are finished. Thus, we obtain the 

hierarchical of task placement and scheduling in Fig. 2. Firstly, the relationships among units 

in feature model are determined and these units are gathered into some Threads (Layer1 in Fig. 

2) to finish task placement. Tasks among Threads communicate with each other by using 

shared memory. Secondly, Threads are gathered into several VMs and we run a middleware in 

each VM to coordinate these Threads. Tasks among VMs communicate with each other by 

using authorized page (Layer2  in Fig. 2).Thirdly, VMs are gathered into several PMs and VMM 

runs in each host to coordinate their VMs. Tasks among PMs communicate with each other by 

using network protocols (Layer3 in Fig. 2). And finally, PMs are connected into a 

VirtualCluster(Layer4 in Fig. 2). 

 

Middleware

... ...
Middleware

...VM VM

VMM
PM

Middleware

... ...
Middleware

...VM VM

VMM
PM...

VirtualCluster

Fig.2  Four layers in task placement and scheduling  based on virtual machines
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Layer2

Layer3

Layer4  
Fig. 2. Four layers in task placement and scheduling based on virtual machines 

 

(3) The layers are connected. Middleware, connecting threads and VM, does not only 

complete the scheduling of threads, but also complete the communication and synchronization 

of tasks in external VMs [62]. VMM, connecting VM and PM, does not only complete the 

scheduling of VMs, but also complete the communication and synchronization of the tasks in 

external PMs. Network protocols, connecting all PMs, is responsible for the communication 

and synchronization with the tasks in this cluster.  

5.2 The algorithms for task placement and scheduling 

We design a task scheduling alogrithm (TSA) in this section, and TSA composes of two 
subalgorithms: VPVM and TEVM. According to the steps in the workflow of task placement 
and scheduling, the tasks are gathered into four layers via TPVM firstly. We require to fully 
consider the Gathered Degree of these layers in TPVM.  

Definition 8 (Gathered Degree): Gathered Degree, a clustering criterion, gathers the tasks 

in top layers of virtual computing systems into the tasks in low layers. Gathered Degree can be 

measured by quantitative data, and its field belongs to (0,1). Based on the layers of task 
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placement and scheduling, Gathered Degree can be divided into Threads Gathered Degree: π, 

VM Gathered Degree ξ, and PM Gathered Degree ς. 

According to the model shown in formula (8), we set the Gathered Degree π,ξ,ς to 

aggregate the tasks into different layers, named as the scheme of task placement. We call the 

scheme with the maximum matching degree between the feature of tasks and the architectures 

as the optimal scheme. We first assign the subtasks in FM.Units to threads, in which, the initial 

Threads Gathered Degree π0 should enable the system produce moderate number of threads. 

When we map the threads into virtual machines, the initial VM Gathered Degree ξ0 assures 

that the quantity of virtual machines should be greater than that of physical machines. When 

we schedule the virtual machines into physical machines, the initial PM Gathered Degree ς0 

assures that the quantity of physical machines should be equal to or less than that of hosts in 

real cluster, and we determine the deployment of virtual machines in physical machines in 

final. A heuristic algorithm to solve the optimal scheme for task placement based on virtual 

machines (TPVM) is presented in following pseudo-code: 

 

Algorithm1:TPVM 

Input：FM; Q1,Q2,Q3; f0 ,K1 ,K2; Psysn1~4,Pcom1~4,Pswitch1~4  //feature model, configuration of 

hosts, coefficient of designer’s preference, coefficient of switching time 

Output：threads, VMs, PMs;  // the description of tasks in all layers 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

Determine the initial Gathered Degree π0, ξ0, ς0 and step0 using FM, Q1, Q2, Q3; 

minTime←0; step←step0; 

π←π0; While(π>0){ 

Thread threads[];foreach (unit in FM.units) {compute_gather_unit (threads, unit, π);} 

ξ←ξ0; While(ξ>0){ 

VM VMs[];foreach (thread in threads) {compute_gather_thread (VMs, thread, ξ);} 

ς←ς0; while(ς>0){ 

PM PMs[];foreach (VM in VMs) {compute_gather_VM (PMs, VM, ς);} 

Compute I1, I2, I3, I4 using threads, VMs, PMs by formula (6); 

Compute f1,f2 by K1 ,K2 

if (
4

1 2 0

1

[ ( ) ( )]i i

i

f I f I f


  )  { 

Compute ComputeTime using FM,threads, Q1, Q2, Q3; 

Compute SysnTime1,2,3,4 using threads, VMs, PMs , Psysn1~4,by formula (3); 

Compute ComTime1,2,3,4 using threads, VMs, PMs, ,Pcom1~4 by formula (4); 

Compute SwitchTime1,2,3,4 using threads, VMs, PMs, ,Pswitch1~4 by formula (5) ; 

Compute 
4

1

( )i i i

i

Time ComputationTime SwitchTime ComTime SysnTime


     

               if(CompareLower (minTime,Time)>0) ; { minTime←Time; 

              
4

0 0 1

(1 ). (1 ). ( )
n n

j j i i i

j j i

MD V unit V unit SwitchTime ComTime SysnTime
  

        ; 

SaveMinTimeData(threads,VMs,PMs, π,ξ, ς, minTime,MD); }  

}  π-←step ;}  ξ-←step; }  ς -←step;} 

     getMinTimeData (threads,VMs,PMs, π,ξ, ς, minTime, MD); 

check whether minTime, MD can satisfy requirements; 

 if(minTime, MD satisfy requirement){  

connect FM,threads,VMs,PMs; return threads,VMs,PMs ;}  

 Else { Determine initial Gathered Degree π0, ξ0, ς0 and step0 using π,ξ, ς,step; goto  ;} 

 End. 

Fig. 3. The description of TPVM 
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In above TPVM algorithm, the function of compute_gather_unit is to gather a unit in FM to 

a dynamic array threads, and then compute the Gathered Degree π between unit and threads. 

If π is greater than its criterion π0, then, this unit is merged into current element in threads. 

Otherwise, a new element will be created and added into threads, and unit is merged into this 

new element, then, this new element is set as current element in next round. The functions of 

compute_gather_thread and compute_gather_VM are the same as compute_gather_unit. 

TPVM changes the initial Gathered Degree π0, ξ0, ς0  according to step0, and in different π, ξ, ς, 

personal preference f is computed. If the constraint can be satisfied via the judgement of f, the 

running time and matching degree are determined to compare with the value in the last round, 

and then, obtain the optimal solution of them in step0. If the optimal solution in step0 can not 

satisfy the requirement of designer, the initial Gathered Degreeπ0, ξ0,, ς0 and step0 should be 

changed until the designer finds out the most satisfactory solution. The function of 

CompareLower is to compare the values of two time, the function of SaveMinTimeData is to 

save the computing results, and the function of getMinTimeData is to get the minimum time 

from computing results. We can obtain the relative optimal solution via π, ξ, ς by changing 

their step with progressive iterations,so the algorithm TPVM can be convergence to find out 

the optimal scheme of task placement in accordance with the model in a sense.  
Let  n be the quantity of units, m be the quantity of threads, l be the quantity of virtual 

machines, and k be quantity of  physical machines. We suppose TPVM can complete in a group 
of determined π0,ξ0,ς0 and step0. In order to calculate the complexity of TPVM in this 
situation,we firstly determine the complexity of rows 3-20. Because the steps’number of 
compute_gather_unit (threads, unit, π) is m,the steps’number of compute_gather_thread 
(VMs, thread, ξ) is  l,the steps’number of  compute_gather_VM (PMs, VM, ς) is  k, and the 
steps’number in rows 17-19 is  (π0/step0) (ξ0/step0)(ς0/step0),then,the steps’number in rows 
7-19 is ((π0/step0)(ξ0/step0)( ς0/step0)+k).l.ς0/step0,the steps’number in rows 5-19 is   [((π0/step0) 
(ξ0/step0)(ς0/step0)+k).l.ς0/step0+l].m.ξ0/step0, and the steps’number in rows 3-20 is  
{[((π0/step)(ξ0/step)(ς0/step)+k).l.ς0/step+l].m.ξ0/step+m}.n.π0/step. Furthermore, we 
determine the steps of  getMinTimeData (threads,VMs,PMs, π,ξ, ς, minTime, MD) in row 21 as  
(π0/step) (ξ0/step)( ς0/step),and the steps’number in other rows can be thought as O(1). Then, 
the steps’number in rows 1-26 is: 

2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0

6 3 2 6

. . ( 1)
.

l m n klmn lmn mn lmn
C

step step step step step

           
     

 

As a result, the  complexity of TPVM is 

2 2 2

0 0 0

6
( )

lmn
O

step

  
. 

Property 1 (The iterative property of TPVM): For any value of Time，if both sides of its 

minimum value exist the iterations, then TPVM would be monotonic in both sides of the 

minimum Time, and while its corresponding maximum MD would also be monotonic in its 

both sides. We explain this property as follows: Based on the expression of Time, after we 

change π, ξ, ς  with progressive step and complete the aggregation of layers by three functions: 

compute_gather_unit,compute_gather_thread, compute_gather_VM ,the sum of time from 

SysnTime1,2,3,4, ComTime1,2,3,4, SwitchTime1,2,3,4 would also change with the progressive 

iterations.This property enables the Time present monotonically decreasing in its left of the 

minimum value and monotonically increasing in the right of its minimum value. Based on the 

expression of MD, we see that MD has the opposite monotonic property as Time. 
TPVM, as a problem solving algorithm for task placement scheme, lays out a solid basis for 

tasks execution based on virtual machine. When TPVM is performed in a virtualized platform, 
the output of TPVM are taken as the input of tasks execution. The return values from TPVM 
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are three arrays: threads[],VMs[], PMs[].The elements of them are: 
thread=(units[],VM),VM=(threads[],PM),PMs=(VMs[]),which represent the clustering 
results of tasks in four layers. Based on FM, threads[],VMs[], PMs[], the tasks execution 
algorithm based on virtual machines(TEVM) is shown in algorithms 2. 

 
Algorithm 2：TEVM 
Input: FM, threads[],VMs[], PMs[];   
Output: running result 
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Determine the begin_unit and end_unit from FM 

Let task= begin_unit; 

Let return_List be an array to store the return data of tasks. 

Execute(task); 

Function Execute(task){ 

If (task is not end_unit++ ){ 

    input_data=obtainInputData(FM,task,return_List);  

    loadTask(task, input_data); // loadTask is defined as asynchronous function 

    Determine next_tasks[] in FM via task; 

    Foreach(next_task in next_tasks[]){ Execute(next_task); } 

 Else{Find the return_data of task from return_List as running result; }} 

Function obtainInputData (FM,task, return_List){ 

Let isAllReceived=false; 

Extract data_items that task require to take as input data in FM; 

While(isAllReceived ==false){ 

isAllReceived =CheckDataValue(data_items); 

If(isAllReceived==true){ 

      Find input_data of task from return_List via data_items;return input_data } 

} Else{ Sleep to wait;}}} 

Function CheckDataValue(data_items){ 

Let count=0; 

Foreach(data_item in data_items){ 

   Find data_value of data_item from return_List; 

   If(data_value!=null){ count++;}} 

If(count== data_items.Length) return true; else return false;} 

Function loadTask(task, input_data){ 

Determine the thread,VM,PM that begin_unit from threads[],VMs[],PMs[]; 

send message to VM to query the Status of VM ; 

     if(VM has not been created){ Create VM in PM;} 

     if(thread has not been created){ Create thread in VM;} 

     Load task in VM thread via input_data ; 

     receive return_data from task; 

     Add return_data into return_List;} 

Fig. 4. The description of TEVM 

 
TEVM algorithm requires finishing the data transmitting, task loading and task switching. 

TEVM composes of four functions, which find out the initial task named as begin_unit and 
ending task named as end_unit from FM first, and then define the middle variables task and 
return_List. Then, the algorithm begins with begin_unit and performs the scheduling with the 
function Execute() until end_unit finishes its computation. The algorithm tidies the data in 
return_List as running result. In row 5-11, we define Execute() as a recursive calling. The task, 
as the current unit, obtains the input data of tasks via the function obtainInputData() and loads 
the task via the function loadTask(), and then finds out the set of tasks next_tasks extended by 
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the time-relationship of them. In row 12-19, obtainInputData(), as the function to obtain input 
data of task , judges whether all input data data_items exist in return_List via the sub function 
CheckDataValue(). If the values in data_items are existed, the input_data is constructed and 
return back. Otherwise, the system sleeps for a short time until the data arrive. In rows 20-25, 
the function CheckDataValue() is defined. It traverses the values in data_items to judge 
whether the values in return_List are null for corresponding items. The values for items in 
return_List are constructed by the return values from frontier tasks determined by 
time-relationship. In rows 26-33,loadTask() has implemented the loading of task. It first 
determines the thread,VM and PM that the task exists.In this function, the message is sent out 
to VM to query the status of VM. And if VM has not been created in PM, the VM would be 
created. In the same way, the thread is created in VM, and then the task is loaded into the 
thread to execute. The return values of task are obtained and added into return_List. 

Let the average quantity of data flows for each unit be p. We require to compute the 
complexity of four functions to calculate the complexity of TEVM in this situation. The 
complexity of recursive function Execute(task) be nlog2n. Row 23 do transverse the 
return_List, so this row’s steps’ number is p.n, and the the steps of function 
CheckDataValue(data_items) is p. p.n. The steps’ number of obtainInputData() is equal to 
that of CheckDataValue().Because the complexity of function loadTask is O(m.l.k) and the 
steps’ number of row 9 is n, we get the complexity of TEVM 

as :
2 2 2 2 2

2 2 2(p n m.l.k n)n (p 2)n .p nlog n log n C log n     .As a result, in the best case, 

the  complexity of TPVM is 
2 2

2O(p n )log n . 

6. Experiments analysis 

CloudSim is used as the experimental platform to test TSA. CloudSim, developed by The 
Gridbus Project at the University of Melbourne, provides a generalized and extensible 
simulation framework that enables modeling, simulation, and experimentation of emerging 
virtualized infrastructures and application services, allowing users to focus on specific system 
design issues that they want to investigate, without getting concerned about the low level 
details related to cloud-based infrastructures and services.The CloudSim toolkit supports both 
system and behavior modeling of cloud system components, such as data centers, task 
scheduling, virtual machines and resource provisioning policies. 

We install CloudSim toolkit in a PC host of one Intel Xeon 3.40GHz processor with two 
cores, 2GB RAM and 160GB SCSI hard disk. The processor brings a 16KB cache and 1024KB 
secondary cache. The operation system installed in this machine is Windows Server 2003. 
CloudSim toolkit requires a Java development Kit (JDK). We install jdk1.6.0 in Windows 
Server 2003 and set the environment path for CloudSim2.1.1, which is the edition we select for 
the experiments. Our experiments under CloudSim platform are divided into three experiments 
to achieve three goals: 1) to evaluate the effectiveness of time estimated method for tasks in 
feature model and lay out a basis to verify the correctness of task placement and scheduling 
algorithms. 2) to verify the characteristics of TPVM algorithm and solve the problem in the 
task placement and scheduling model. 3) to compare the performance of VSA algorithm with 
other similar algorithms. 

6.1 The experiment 1  

In order to verify the effectiveness of time estimated method, we extend CloudSim, and then 
make experiment 1 to evaluate the theoretical values with the values in practice. 

(1) CloudSim toolkit extension 
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The best task scheduling algorithms implemented in present distributed systems are DLS 
and HEFT, which schedule the tasks via DAG. We create these two algorithms in the 
open-source of CloudSim. In the implementation of DLS and HEFT algorithms, a new class 
Cloudet_task extended from Cloudlet of CloudSim is desgined, and a variable taskAmount is 
added as the member of itself to describe the task’s amount. Meanwhile, the setter and getter 
functions are created for Cloudet_task. 

Most of the present static task scheduling algorithms implement the scheduling from tasks 
to processor, and not related to virtual machines. In order to solve this problem to adapt to the 
requirement of virtual machines scheduling, we make some special transfers in virtualized 
platform to implement these algorithms. We create a new class VirtualMachine_CPU 
extended from class VirtualMachine, and add the calling setCpus(1) into its constructor. In 
this approach, we create the same quantity of virtual machines as that of CPUs in host. When 
the tasks are scheduled to virtual machines, the occupation to a CPU by a virtual machine 
refers to a task scheduling to a CPU,  

The class DatacenterBroker in CloudSim does the task scheduling to virtual machines. For 
a task, the function bindCloudletToVM(int cloudletId,int vmId) in DatacenterBroker would 
bind the task labeled as cloudletId into the virtual machine labeled as vmId. In order to 
implement the task scheduling to CPUs, a new function bindCloudletToCPU(Cloudet_task[] 
cloudlet_tasks,VirtualMachine_CPU[] vm_cpus) is designed to bind multiple tasks to 
corresponding multiple CPUs. 

Besides to them, a new class Statistics with the function execute () is designed to record the 
time expenditure of DLS and HEFT in CloudSim. Based on the task amount, execute() 
function aims to sum the switching time, communication time, synchronization time, 
computation time and other time, and finally the total time of them in scheduling algorithms.  

 (2)The input data of experiment 
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Fig.5  Feature model of CFIE

unit46

unit11

unit24unit23

unit13unit12

unit49

unit38unit37

unit25

unit36

unit48 unit50

unit26

unit15unit14

unit51

unit41unit40

unit28unit27

unit47

unit2unit1

unit57unit56

unit4unit3

unit55

unit35 unit42

unit29

unit53

unit30

unit18unit17

unit54

unit44unit43

unit32unit31

unit59

unit7

unit52

unit5 unit6

unit16

unit58

unit39

 
Fig. 5. Feature model of CFIE 

 
Combined with description of tasks, we take a simulation of cold flow impulsive 

experiment for a car engine (CFIE), the typical coupling process considering the affecting 
relations between flow field and structure, as an instance to analyze the TPVM algorithm. 
CFIE, a collaborative computing task, constitutes of 59 units after we determine its 
requirement combined with the descriptions of feature model, threads, virtual machines and 
physical machines. We set the numbers to them and determine their timing-relationships, and 
then the feature model of CFIE is shown in Fig. 5 (Because of inconvenience in drawing the 
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figure, we just display the data flows and omit the control flows and the description of 
units).We determine the elements in feature model: unit=(Feature, CFs, IDFs ,ODFs, 
SCs,time) and create a FM=(Units, controlflows, dataflows). The time in each of unit in 
FM.Units is estimated as 15000~20000 millisecond . 

The configuration data of this experiment: We use 2, 4, 6 and 8 hosts in this computing 
platform, and each machine owes a CPU with two cores. Because the quantity of virtual 
machines is equal to the quantity of CPU, the quantity of virtual machines is set as 2, 4, 6 and 
8. 

(3)The experimental results 
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0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

2 4 6 8

 D L S  S i m u t a t i o n

 H E F T  S i m u t a t i o n

 C o m p u t a t i o n

t i m e

 n o d e s
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 6 0 0 0

2 4 6 8

 D L S  S i m u t a t i o n

 H E F T  S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

2 4 6 8

 D L S  S i m u t a t i o n

 H E F T  S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

2 4 6 8

 D L S  S i m u t a t i o n

 H E F T  S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

2 4 6 8

 D L S  S i m u t a t i o n

 H E F T  S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

2 4 6 8

 D L S  S i m u t a t i o n

  H E F T  S i m u t a t i o n

 C o m p u t a t i o n

t i m e

n o d e s

(millisecond)

 
Fig. 6. The compasion of DLS,HEFT simulation time with computation time 

 
We develop the simulation code in CloudSim, including the initiation of Gridsim library, the 

creation of data center, the construction of a Broker, the creation of virtual machines, the 
creation of tasks, the submission of tasks, task scheduling, starting the simulation, the data 
statistics, ending the simulation and outputting the results.  

Based on the speed of CPU and the tasks’ amount inputted into above DLS and HEFT 
algorithms, we estimate the computation time via related time estimated method in current 
research literature [66] and assign it into the Unit.time. Based on the computation time of tasks, 
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the formulas (3-5) in this paper are taken to compute the switching time, communication time 
and synchronization time. 

Based on the steps described in above text, the experiment 1 is running for five times. The 
statistics results are taken to average their values. By comparing the experimental results of 
algorithms in CloudSim simulation and the results of our time estimated methods presented in 
this paper, the results are shown in Fig. 6, in which, the trend of the time in DLS algorithm, 
HEFT algorithm and our theoretical computation can be seen clearly. We show the sum of 
SwitchTime, the sum of ComTime, the sum of SysTime, the sum of ComputationTime, the Sum 
of OtherTime and the Sum of TotalTime in four layers in Fig. 6 (a)-(f).  

It is shown from Fig. 6 (a) that the switching time estimated by our method is almost 
overlapping with the switching time in DLS and HEFT algorithms. Fig. 6 (b)and (c) show that 
the communication time and synchronization time estimated by our method close to the 
communication time and synchronization time in DLS algorithm. Fig. 6 (d) shows that the 
tasks computation time estimated by our method closes to the tasks computation time in HEFT 
algorithm. Since our method does not compute other time, but besides such four kinds of time, 
there may exist other time in practice. Fig. 6 (e) shows that the other time in DLS and HEFT 
algorithm experiments is not zero, but the values of them are small  and could be neglected 
when comparing with the sum of total time in Fig. 6 (f). It is seen from Fig. 6 (f) that the 
estimated time in our study is in-between the sum of five kinds of statistics time in DLS and 
HEFT algorithms, which are not greater than 5% of them. 

It is concluded from Fig. 6 that the time sourcing from our estimated method and the time of 
DLS and HEFT algorithms have greater than 95% similarity. It has proved the effectiveness 
and the meaningfulness of our time estimated method. Therefore, the feature model presented 
in this study can use this estimated time as the input data to perform a static task placement and 
scheduling in TPVM. We further discuss the execution of TPVM and perform the experiments 
in CloudSim in next section. 

6.2 The experiment 2 

TPVM algorithm is developed in the source of CloudSim to extend the function of platform, 
thus, to verify the properties of TPVM. 

(1) The TPVM algorithm implementation  
In the implementations of TPVM, three new classes Cloudet_unit, Cloudet_thread and 

Cloudet_FM extended from Cloudet is designed, and the tuple of Unit, Cloudet_unit[],and the 
tuple of FM  are added into these classes as the members of themselves. At the same time, the 
setter and getter methods are designed to set and get the values of them. Then, a new class 
Parameter is designed with the members Q1,Q2,Q3 ,f0,K1 ,K2, Psysn1~4, Pcom1~4, Pswitch1~4 to 
load the input values of TPVM algorithm, and the setter and getter methods are designed to set 
and get the values of them again.  

The single task scheduling method bindCloudletToVM (int cloudletId, int vmId) requires 
changing as the multiple tasks scheduling method to implement the task scheduling to virtual 
machines, which is the same as the design of class DatacenterBroker_CPU. We design a new 
class DatacenterBroker_FourLayers extended from DatacenterBroker, whose function 
bindCloudletToFourLayers(Cloudet_FM fm, Parameter para) implements TPVM algorithm 
to solve the problem in the model of  task placement and scheduling based on virtual 
machines. 

(2) The input data of TPVM  
In order to verify the convergence property and the rationality of VPTA, we continue to take 

the data of 59 subtasks in project CEIE as the testing data. Two steps in below section were 
made to verify the rationality of TPVM. Our experiments aim to determine the effect that 
physical configuration and personal preference have on the convergence of TPVM. 
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Ⅰ) The coefficient of personal preference f0 is set as 0.6, and the quantity of computing 

nodes in a cluster is set as 2, 4, 6, 8 respectively, of which, each node has a CPU with two 
cores. 

Ⅱ) We have 4 computing nodes in a cluster and each node has a CPU with two cores. The 

coefficient of personal preference f0 in applications development and deployment is set as 0.6, 
0.5, 0.4, and 0.3 respectively. 

Besides to those, K1 and K2 in such two steps of experiment are both set as 0.2,Psysn1~4 , 
Pcom1~4 and Pswitch1~4 are all set as 1. 

(3) The experimental results 
When the input parameters of TPVM algorithm are fixed, (eg. FM,K1,K2,Psysn1~4, 

Pcom1~4,and Pswitch1~4) , the relative optimal solution is necessity to depend on Q1,Q2,Q3 and 

f0. As a heuristic algorithm,the nature of TPVM aims to find a relative optimal scheme for task 

placement and scheduling through enough progressive iterations. For any group of the values 

in stepⅠand stepⅡ, these iterations will begin with π0, ξ0, ς0, and end to solve Time and MD 

satisfying constraint in accordance with step0. In those iterations, based on the property of 

TPVM, we compare their computing results with pairwise comparison, thus the minimum 

Time and the maximum MD are inevitable to check out. 

StepⅠanalyzes the trend of Time and MD with the iterations under the condition of 

different physical configurations, and the laws of them are shown in Fig. 7 and Fig. 8. We can 

see from the result that TPVM could find out the optimal solution for any group of physical 

configuration and the optimal solution is in the lowest point of any of such four Time curves or 

the highest point of any of such four MD curves, which are consistent with the iterative nature 

of TPVM. The curves in Fig. 7 have verified that Time present monotonic in both sides of the 

minimum Time, and Fig. 8 has verified that MD present monotonic in both sides of the 

maximum MD. Different physical configurations would lead to different iterations required to 

find out their optimal solutions. We set the quantities of computing nodes are 2, 4, 6 and 8 

respectively, thus, when the iterations of them reach to 2101, 1609, 1410 and 1202, we get 

their relative solutions. The more the quantity of computing nodes are, the less are the 

iterations for TPVM to come to their lowest running time and highest matching degree, 

because strong hardware configuration would make the aggregation of four layers easier. It is 

seen from Fig. 7 that more quantity of computing nodes in a cluster would produce a lower 

value in the minimum Time, because strong physical configuration would lead to a less time in 

synchronization, communication and switching in four layers, so the running time of 8 

computing nodes in a cluster are less than that of 2, 4 and 6 computing nodes in a cluster. It is 

shown from Fig. 8 that physical configuration almost has no effect on the maximum MD: 

different physical configurations would produce the same maximum MD inbetween 0.7~08. 

The expression of MD demands TPVM obtain the optimal scheme for task placement and 

scheduling in any physical configuration environment, so the same maximum MDs in 

different parameters shows that we have gotten the optimal scheme. It is also seen from this 

experiment that the deviation of different matching degrees is less than that of running time in 

different physical configurations. The MD curves in Fig. 8 compact with each other inbetween 

0.28~0.77, but the Time curves in Fig. 7 are dispersed very much. It is concluded that the 

matching degree does not depend on the physical configurations, but the physical 

configuration has a great effect on the running time of virtual computing systems. 
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Fig. 7. The trend of Time in different physical configurations (millisecond) 

 

0.20

0.30

0.40

0.50

0.60

0.70

0.80

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300

2 machines MD

4 machines MD

6 machines MD

8 machines MD

Iterations

MD

 
Fig. 8. The trend of MD in different physical configurations 

 

StepⅡanalyzes the trend of Time and MD with the iterations under the condition of 

different personal preferences, and the laws of them are shown in Fig. 9 and Fig. 10. We can 

see from the result that TPVM could find out the optimal solution for any group of personal 

preference and the optimal solution is in the lowest point of any of such four Time curves or in 

the highest point of any of such four MD curves, which are consistent with the iterative nature 

of TPVM. The curves in Fig. 9 have also verified that Time present monotonic in both sides of 

the minimum Time, and Fig. 10 has also verified that MD present monotonic in both sides of 

the maximum MD. Different personal preferences would lead to different iterations required to 

find out their optimal solutions. We set f0 as 0.6, 0.5, 0.4, and 0.3 respectively, thus, when the 

iterations of them reach to 1202, 1398, 1610 and 2108, we get their relative solutions. The 

bigger f0  is, the less the iterations are for TPVM to come to their lowest running time and 

highest matching degree, because bigger personal preference coefficient would make the 

aggregation of our layers easier. It is seen from Fig. 9 that a smaller f0 for designers would 

enable a higher value of the minimum Time, because the higher parallelism of tasks would 

produce a smaller ComputationTime in Time. It is also shown from Fig. 10 that personal 

preference almost has no effect on the maximum MD: different personal preferences would 

produce the same maximum MD inbetween 0.7~0.8. This conclusion is similar to the result of 

experiment 1. It is also seen from this experiment that the deviation of matching degrees is less 

than that of running time in different personal preferences. The MD curves in Fig. 10 compact 

with each other inbetween 0.25~0.74, but the Time curves in Fig. 10 are dispersed very much. 

It is concluded that the matching degree does not depend on the personal preferences, but the 

personal preference has a great effect on the running time of virtual computing systems. 
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Fig. 9. The trend of Time in different personal preferences (millisecond) 
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Fig. 10. The trend of MD in different personal preferences 

 

It is concluded from above experiment that TPVM algorithm can find out a group of π,ξ,ς to 

promote the value of Time come to their minimum value and MD come to their maximum 

value for any personal preference  and physical configuration, so the TPVM algorithm is 

feasible to implement task placement and scheduling. Based on the results of such two 

experiments, we set the personal preference coefficient f0 as 0.4 in CFIE, then, four hosts are 

used to develop and deploy this application(each node has a CPU with two cores). We run our 

program of algorithm TPVM to get the optimal scheme of task placement and scheduling 

shown in Fig. 11. It is seen from Fig. 11 that 59 units are assigned to 14 threads, of which, 

thread1 and thread2 are mapped into VM1, thread3 and thread4 are mapped into VM2, 

thread5 and thread6 are mapped into VM3, thread7 and thread8 are mapped into VM4, 

thread9 and thread10 are mapped into VM5, thread11 and thread12 are mapped into VM6, and 

thread13 and thread14 are mapped into VM7.Then, VM1 and VM2 are scheduled into PM1, 

VM3 and VM4 are scheduled into PM2, VM5 and VM6 are scheduled into PM3,and VM7 is 

scheduled into PM4. 

Based on the layers of task placement and scheduling shown in Fig.11, we have developed 

the application of CFIE by implementing parallel algorithm. The application would be taken 

to deploy according to the workflow in Fig.11. It is shown that TPVM can improve the 

matching degree between tasks and architectures to raise the peak performances of clusters 

and satisfy the requirement of designers in applications development and deployment. In this 

section , experiment 2 has verified  the effectiveness of our heuristic task placement and  

scheduling alogorithm. 

6.3 The experiment 3 
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Fig. 11. CFIE task placement and scheduling based on virtual machines in four layers 

 
In order to compare the TSA algorithm with the most popular and best task scheduling 

algorithms: DLS, HEFT, CPOP and LMT, we implement them in this section. 
(1) The algorithms implementation 
The implementation of CPOP and LMT is the same as DLS and HEFT. The implementation 

of TSA is as follows: On the basis of designing the new classes 
Cloudet_unit,Cloudet_thread,Cloudet_FM and DatacenterBroker_FourLayers, Stastics  in 
above section, according to results of TPVM, an new function executeCloudletInFourLayers 
(Cloudet_FM fm, Threads, VirtualMachineList VMs, host[] PMs) is added into the class 
DatacenterBroker_FourLayers to implement the TEVM. Thus, we construct TSA in CloudSim. 

(2) The input data of algorithms 
We extend the CFIE project to make the experiment, and the quantity of subtasks is set as 

70, 82, 90, and 105. We suppose that the system composes of enough hosts that the experiment 
requires, and each host has a CPU with two cores. In TPVM algorithm, the time estimated 
values in FM has been inputted into TPVM. As TPVM could optimize the task placement, we 
could find out the optimal threads’ quantity, optimal VMs’ quantity, and optimal PMs’ 
quantity. In order to ensure the comparability between TSA and DLS, HEFT, CPOP and LMT 
in virtualized data center, the four algorithms should use the same hosts as that TSA algorithm 
produces, and ensure the same quantity of CPUs. DLS, HEFT, CPOP and LMT algorithms 
take DAG as the input data. 

(3) The experiment result 
We make the simulation code and run the program. After inputting the tasks with 59, 70, 82, 

90, and 105 subtasks respectively into TSA algorithm, the best quantity of physical machines 
determined by TPVM for task scheduling are 4, 6, 7, 8 and 10. DLS, HEFT, CPOP and LMT 
algorithms also adopt 4, 6, 7, 8 and 10 physical machines respectively. We run the algorithms 
for five times and average their values. The comparison of five algorithms in performance is 
shown in Fig. 12. We list the sum of SwitchTime, the Sum of ComTime, the sum of SysTime, 
the Sum of ComputationTime, the sum of OtherTime and the sum of TotalTime in four layers 
in Fig. 12 (a)-(f). 
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Fig. 12. The comparison of the performance for five algorithms 

 
It is shown from Fig. 12 (a) and (c) that, for parallel tasks with different subtasks, the 

switching time and communication time in TSA algorithm are less than those in present four 
algorithms, especially in switching time. With the increase of subtasks, the synchronization 
time in DLS, HEFT, CPOP and LMT increases rapidly, but such time in TSA algorithm 
presents the trend of slow increase. Fig. 12 (b) show that  the communication time in TSA 
algorithm is less than that of DLS,CPOP and LMT, and it is also less than that of FEFT,  
especically when there are more subtasks. And meanwhile, we see that the communication 
time in TSA algorithm presents the trend of slow increase. Fig. 12 (d) shows that, the 
computation time in TSA algorithm is almost the same as that of DLS, HEFT, CPOP and LMT. 
With the increase of the quantity for tasks, the computation time in DLS, HEFT and LMT 
presents the trend of slow increase. And only when the quantity of physical machines 
increases, such time in CPOP algorithm decreases slowly. Fig. 12 (e) shows that the other 
time in TSA algorithm is shorter than that in other algorithms and it can almost be neglected. 
The other time in CPOP and LMT decreases ,but such time in DLS and HEFT increases with 
the increase of quantity of subtasks. Fig. 12 (f) shows that, the total time of TSA algorithm is 
the shortest in five algorithms,  the next one is DLS, and the last one is LMT. The total time of 
TSA algorithm is 5%~8% shorter than that in DLS, and is 15~20% than LMT. 
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We analyze the data in Fig.12 further to exact the key data items in its subfigures. After 
tiding the data, we calculate the weights of the computation time in total time for five 
algorithms in the quantities of subtasks being 59,70,82,90 and 105 respectively. The result is 
shown in Fig. 13. 
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Fig. 13. The weight of computing time in total time for five algorithms 

 
It is shown from Fig. 13 that, for parallel computing tasks with different subtasks, the 

weight of computation time in total time in TSA algorithm is greater than that in DLS, HEFT, 
CPOP and LMT algorithms. The weight in TSA algorithm is about 83~85%. We also see that 
different quantities of subtasks woud lead to slight change of the weight. The weight in HEFT 
algorithm is above 75%~83%. But different quantities of subtasks lead to great change of 
weight in DLS, HEFT, CPOP and LMT algorithms. For example, for DLS algorithm, the 
weights are 81.56% and 71.83% for 59 subtasks and 105 subtasks, and the distance of them 
closes to 10%. The data show that TSA can utilize and allocate the resources in systems to 
tasks more efficiently than other algorithms, so it has the lowest time expenditure of all. 

The experimental results show that the performance of TSA algorithm is better than other 
algorithms to solve the problem of task placement and scheduling based on virtual machines. 
Our algorithm reduces the time expenditure in four layers greatly and implements the balance 
among layers. The computation time of TSA algorithm is not much shorter than other 
algorithms, and the decrease of the total time is completed mainly by reducing the time in 
switching, communication and synchronization. The TSA algorithm has reduced the other time 
expenditure in addition to such four kinds of time via task scheduling in four layers. TSA 
algorithm has a better performance for most of the indexes, especially the  running time, so we 
think that it is better than other four algorithms in virtualized platform. 

7. Conclusions and suggestions 

7.1 Conclusions 

This paper presents a model for task placement and scheduling in the virtualized high 

performance computing environment. We introduce the virtualization technology into the 

clusters and study a methodology for task placement and scheduling based on virtual machines. 

The shortcomings of related work are summarized to present two problems: the performance 

of systems and the convenience in applications development and deployment. We describe the 
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tasks via the thought of feature model to formalize the work of task placement and scheduling. 

We can find out the highest matching degree between the feature of tasks and the architectures 

of computing systems via the model of task placement and scheduling. The steps of the 

workflow and the algorithms of task placement and task execution are designed to obtain the 

optimal scheme based on the constraint. It is concluded from the experiments that : (1) The 

estimated time is very close to the actual running time in our study, and the experimental work 

show the effectiveness of the time estimation approach. (2) TPVM algorithm can be 

convergence within prescribed limits and obtain the optimal solution for any group of physical 

configuration or personal preference, which shows that it is feasible and reasonable for us. (3) 

The weight of computation time in total time for TSA algorithm is less than those in other four 

algorithms, so it is better than other four algorithms in performance.Therefore, the optimal 

task placement and scheduling based on virtual machines can satisfy the requirements of task 

scheduling in different layers of virtual computing systems to improve their performances.  

7.2 Suggestions 

Our methodology provides a thought to solve the problems of low performance in clusters and 

the inconvenience in applications development and deployment. The proposed solution allows 

users to specify customized constraints for task placement and scheduling. However, there still 

existed some questions that requires us to do in future: 

(1) It is a relatively complex problem for task placement and scheduling based on virtual 

machines. The unresolved problems are algorithms of task placement and scheduling oriented 

changing requirements and the construction of feature model for undetermined tasks [63]. We 

would further discuss these problems in future.  

(2) The experimentation of this paper is based on a simulation enviroment CloudSim, so we 

can not make a conclusion that the proposed solution is also actually converge fast enough in a  

large-scale real clusters. Our methodology might require to make some adjustments to adapt to 

large-scale HPC platforms which compose of thousands of cores. Therefore, the task 

placement and scheduling problem is even more challenging in those platform. We will verify 

the feasibility of our thought in large-scale cluster systems in future work. 

(3) Our study assumes that the parallel applications have no real-time constraints, so the 

proposed solution could not be applied to the prediction application with time constraints. But 

there are many parallel applications having real-time constraints in current virtualized 

environments, so the model of task placement and scheduling meeting real-time requirements 

should be considered in next stage. 
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