• 제목/요약/키워드: Virtual machine provisioning (VM provisioning)

검색결과 4건 처리시간 0.017초

클라우드 환경에서 기대 값 기반의 동적 자원 예측 기법 (Resource Prediction Technique based on Expected Value in Cloud Computing)

  • 최영호;임유진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권3호
    • /
    • pp.81-84
    • /
    • 2015
  • 클라우드 서비스는 다양한 장점들 덕분에 현대 IT 사업에서 주목을 받고 있다. 클라우드 환경에서 사용자의 요구는 동적이기 때문에 서비스 제공자는 사용자 요구량을 예측하고 이를 기반으로 자원을 제공하는 VM(Virtual Machine) 프로비저닝 기법이 필요하다. VM 프로비저닝은 사용자의 QoS를 만족시키고 자원 관리 비용을 최소화하여 서비스 제공자의 이득을 최대화하는 것을 목적으로 한다. 본 논문에서는 효율적인 VM 프로비저닝을 위해 사용자의 자원 요구량을 예측하고, 이를 기반으로 서비스 제공자의 총 경비에 대한 기대 값을 최소화시키기 위한 새로운 VM 프로비저닝 기법을 제안한다. 또한 제안 기법의 성능 분석을 위하여 실제 데이터를 이용하여 자원 요구 예측량과 자원 제공량을 계산하고, 이를 다른 기법들과 비교함으로써 제안 기법이 서비스 제공자의 총 경비를 최소화함을 보여준다.

Q-learning 모델을 이용한 IoT 기반 주차유도 시스템의 설계 및 구현 (Design and Implementation of Parking Guidance System Based on Internet of Things(IoT) Using Q-learning Model)

  • 지용주;최학희;김동성
    • 대한임베디드공학회논문지
    • /
    • 제11권3호
    • /
    • pp.153-162
    • /
    • 2016
  • This paper proposes an optimal dynamic resource allocation method in IoT (Internet of Things) parking guidance system using Q-learning resource allocation model. In the proposed method, a resource allocation using a forecasting model based on Q-learning is employed for optimal utilization of parking guidance system. To demonstrate efficiency and availability of the proposed method, it is verified by computer simulation and practical testbed. Through simulation results, this paper proves that the proposed method can enhance total throughput, decrease penalty fee issued by SLA (Service Level Agreement) and reduce response time with the dynamic number of users.

CADRAM - Cooperative Agents Dynamic Resource Allocation and Monitoring in Cloud Computing

  • Abdullah, M.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.95-100
    • /
    • 2022
  • Cloud computing platform is a shared pool of resources and services with various kind of models delivered to the customers through the Internet. The methods include an on-demand dynamically-scalable form charged using a pay-per-use model. The main problem with this model is the allocation of resource in dynamic. In this paper, we have proposed a mechanism to optimize the resource provisioning task by reducing the job completion time while, minimizing the associated cost. We present the Cooperative Agents Dynamic Resource Allocation and Monitoring in Cloud Computing CADRAM system, which includes more than one agent in order to manage and observe resource provided by the service provider while considering the Clients' quality of service (QoS) requirements as defined in the service-level agreement (SLA). Moreover, CADRAM contains a new Virtual Machine (VM) selection algorithm called the Node Failure Discovery (NFD) algorithm. The performance of the CADRAM system is evaluated using the CloudSim tool. The results illustrated that CADRAM system increases resource utilization and decreases power consumption while avoiding SLA violations.

Efficient Virtual Machine Resource Management for Media Cloud Computing

  • Hassan, Mohammad Mehedi;Song, Biao;Almogren, Ahmad;Hossain, M. Shamim;Alamri, Atif;Alnuem, Mohammed;Monowar, Muhammad Mostafa;Hossain, M. Anwar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1567-1587
    • /
    • 2014
  • Virtual Machine (VM) resource management is crucial to satisfy the Quality of Service (QoS) demands of various multimedia services in a media cloud platform. To this end, this paper presents a VM resource allocation model that dynamically and optimally utilizes VM resources to satisfy QoS requirements of media-rich cloud services or applications. It additionally maintains high system utilization by avoiding the over-provisioning of VM resources to services or applications. The objective is to 1) minimize the number of physical machines for cost reduction and energy saving; 2) control the processing delay of media services to improve response time; and 3) achieve load balancing or overall utilization of physical resources. The proposed VM allocation is mapped into the multidimensional bin-packing problem, which is NP-complete. To solve this problem, we have designed a Mixed Integer Linear Programming (MILP) model, as well as heuristics for quantitatively optimizing the VM allocation. The simulation results show that our scheme outperforms the existing VM allocation schemes in a media cloud environment, in terms of cost reduction, response time reduction and QoS guarantee.