• Title/Summary/Keyword: Virtual design model

Search Result 701, Processing Time 0.034 seconds

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Jae-seug Ki
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.381-389
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators). Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps: Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

A Study on the Efficient Occlusion Culling Using Z-Buffer and Simplified Model (Z-Buffer와 간략화된 모델을 이용한 효율적인 가려지는 물체 제거 기법(Occlusion Culling)에 관한 연구)

  • 정성준;이규열;최항순;성우제;조두연
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • For virtual reality, virtual manufacturing system, or simulation based design, we need to visualize very large and complex 3D models which are comprising of very large number of polygons. To overcome the limited hardware performance and to attain smooth realtime visualization, there have been many researches about algorithms which reduce the number of polygons to be processed by graphics hardware. One of these algorithms, occlusion culling is a method of rejecting the objects which are not visible because they are occluded by other objects, and then passing only the visible objects to graphics hardware. Existing occlusion culling algorithms have some shortcomings such as the required long preprocessing time, the limitation of occluder shape, or the need for special hardware implementation. In this study, an efficient occlusion culling algorithm is proposed. The proposed algorithm reads and analyzes Z-buffer of graphics hardware using Microsoft DirectX, and then determines each object's visibility. This proposed algorithm can speed up visualization by reading Z-buffer using DirectX which can access hardware directly compared to OpenGL, by reading only the region to which each object is projected instead of reading the whole Z-Buffer, and the proposed algorithm can perform more exact visibility test by using simplified model instead of using bounding box. For evaluation, the proposed algorithm was applied to very large polygonal models. And smooth realtime visualization was attained.

A case study on Metaphor forms of User Interface in HMD based Virtual reality FPS games (HMD기반 가상현실 FPS게임 인터페이스의 메타포 유형 분석 연구)

  • Kim, Bo-Yeon;Suk, Hae-Jung
    • Journal of Korea Game Society
    • /
    • v.18 no.1
    • /
    • pp.27-38
    • /
    • 2018
  • Today, the field that actively utilizes HMD, which is a representative implementation device of virtual reality, is game. We have frequently used interface design using metaphor to user interface of HMD based virtual reality game. The purpose of this study is to find out the metaphor types that appear in the game interface of the virtual reality FPS genre of HMD devices, which is a new medium. As a result of research, the metaphor types appearing on multiple interfaces have navigation, predictability-based, familiarizing, and physical world metaphor in terms of information perception and predictability-based and familiarizing metaphor in term of control action. It is considered possible to construct a correct mental model. It is expected that the stability-based metaphor to prevent user mistakes and the presentation metaphor to identify the identity of information space will be needed in the future.

A study on User experience of Virtual Beauty Makeup Applications (가상 뷰티 메이크업 애플리케이션의 사용자 경험 연구)

  • Woo, Ji-Hye;Kim, Seung-In
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.459-464
    • /
    • 2020
  • This study is a study that analyzes the user experience of a virtual makeup application in the beauty industry where color or formulation testing is important. Recently, cases of beauty smart stores and beauty applications using AR and AI are increasing. However, since virtual makeup is different from testing a real product, it is necessary to derive needs through research from the user's side. In order to compare user preferences by using AR and AI cases, six factors based on the emotional interface model were analyzed through a questionnaire to identify items with statistically significant figures. As a result, the user felt comfortable with the virtual makeup function, but showed that it needs to be supplemented in terms of reliability. Since this study focused on the customer experience as a real user and identified the main experience factors and needs of virtual makeup through two types of comparison, it is hoped that this study will be useful as a prior study.

A Systematic Model for Constructing Environment in Virtual World (가상세계 구축을 위한 체계적 환경 모델링 방법)

  • Kim, No-Sun;Park, Jong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.3
    • /
    • pp.13-23
    • /
    • 2001
  • In this paper, we design and implement a virtual environment which forms the basis of constructing a virtual world in a systematic fashion. Though virtual environments have been developed in several systems using the virtual reality, they are designed without a systematic method of constructing. In our framework, a virtual environment is structured in six layers according to their functions and ranges based on a classification of environmental factors of which the real world is composed. These layers compose a universal environment in our virtual world by operating independently and exchanging information with one another periodically. The designed environment shows that it Can provide diverse real life situations and is easily extensible to enhance its functionalities. We present effective design schemes for several important environmental factors. We demonstrate viability of our framework through implementing a plausible virtual world based on the proposed schemes.

  • PDF

Understanding of the Sung-Rye-Moon Roof Structure and implementation of the traditional Bracket-set Design Modules for BIM tools

  • Park, Soo-Hoon;Ahn, Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1613-1620
    • /
    • 2011
  • Roof structure of the traditional buildings in the Northeast Asia region including Korea contains the most complicated and crucial components of the building and therefore the issues such as cost down, productivity and the attempt to combine the traditional building methodology with contemporary building technology turn out to be vital to the survival of the old yet disconnected traditional building industry. One of the distinctive modern building technologies is handling life-cycle building information by constructing virtual buildings using BIM, building information modeling tools. In this paper we follow a procedure to implement some of the design modules to be applied in BIM tools which are platforms for constructing virtual building models. We focus on Gong-po components namely the bracket-sets which are the essential part that connects the middle parts to the top parts (the roof structure) which are considered to be the most elaborate parts of the traditional buildings. The target building to work with in this paper is the Sung-Rye-Moon which has special cultural and social meanings nowadays and we tested our understanding and the design modules such as the bracket-sets by constructing a virtual building model of Sung-Rye-Moon.

Accelerating Group Fusion for Ligand-Based Virtual Screening on Multi-core and Many-core Platforms

  • Mohd-Hilmi, Mohd-Norhadri;Al-Laila, Marwah Haitham;Hassain Malim, Nurul Hashimah Ahamed
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.724-740
    • /
    • 2016
  • The performance issues of screening large database compounds and multiple query compounds in virtual screening highlight a common concern in Chemoinformatics applications. This study investigates these problems by choosing group fusion as a pilot model and presents efficient parallel solutions in parallel platforms, specifically, the multi-core architecture of CPU and many-core architecture of graphical processing unit (GPU). A study of sequential group fusion and a proposed design of parallel CUDA group fusion are presented in this paper. The design involves solving two important stages of group fusion, namely, similarity search and fusion (MAX rule), while addressing embarrassingly parallel and parallel reduction models. The sequential, optimized sequential and parallel OpenMP of group fusion were implemented and evaluated. The outcome of the analysis from these three different design approaches influenced the design of parallel CUDA version in order to optimize and achieve high computation intensity. The proposed parallel CUDA performed better than sequential and parallel OpenMP in terms of both execution time and speedup. The parallel CUDA was 5-10x faster than sequential and parallel OpenMP as both similarity search and fusion MAX stages had been CUDA-optimized.

Virtual Brake Pressure Sensor Using Vehicle Yaw Rate Feedback (차량 요레이트 피드백을 통한 가상 제동 압력 센서 개발)

  • You, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.113-120
    • /
    • 2016
  • This paper presents observer-based virtual sensors for YMC(Yaw Moment Control) systems by differential braking. A high-fidelity empirical model of the hydraulic unit in YMC system was developed for a model-based observer design. Optimal, adaptive, and robust observers were then developed and their estimation accuracy and robustness against model uncertainty were investigated via HILS tests. The HILS results indicate that the proposed disturbance attenuation approach indeed exhibits more satisfactory pressure estimation performance than the other approach with admissible degradation against the predefined model disturbance.

A Study on Construction Site of Virtual Desktop Infrastructure (VDI) System Model for Cloud Computing BIM Service

  • Lee, K.H.;Kwon, S.W.;Shin, J.H.;Choi, G.S.;Moon, D.Y.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.665-666
    • /
    • 2015
  • Recently BIM technology has been expanded for using in construction project. However its spread has been delayed than the initial expectations, due to the high-cost of BIM infrastructure development, the lack of regulations, the lack of process and so forth. In construction site phase, especially the analysis of current research trend about IT technologies, virtualization and BIM service, data exchange such as drawing, 3D model, object data, properties using cloud computing and virtual server system is defined as a most successful solution. The purpose of this study is enable the cloud computing BIM server to provide several main function such as edit a model, 3D model viewer and checker, mark-up, snapshot in high-performance quality by proper design of VDI system. Concurrent client connection performance is a main technical index of VDI. Through test-bed server client, developed VDI system's multi-connect control will be evaluated. The performance-test result of BIM server VDI will effect to development direction of cloud computing BIM service for commercialization.

  • PDF