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Abstract 
The performance issues of screening large database compounds and multiple query compounds in virtual 
screening highlight a common concern in Chemoinformatics applications. This study investigates these 
problems by choosing group fusion as a pilot model and presents efficient parallel solutions in parallel 
platforms, specifically, the multi-core architecture of CPU and many-core architecture of graphical processing 
unit (GPU). A study of sequential group fusion and a proposed design of parallel CUDA group fusion are 
presented in this paper. The design involves solving two important stages of group fusion, namely, similarity 
search and fusion (MAX rule), while addressing embarrassingly parallel and parallel reduction models. The 
sequential, optimized sequential and parallel OpenMP of group fusion were implemented and evaluated. The 
outcome of the analysis from these three different design approaches influenced the design of parallel CUDA 
version in order to optimize and achieve high computation intensity. The proposed parallel CUDA performed 
better than sequential and parallel OpenMP in terms of both execution time and speedup. The parallel CUDA 
was 5-10x faster than sequential and parallel OpenMP as both similarity search and fusion MAX stages had 
been CUDA-optimized. 
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1. Introduction 

Chemoinformatics is concerned with the application of computational methods to solve chemical 
problems, with particular emphasis on the manipulation of chemical structural information [1]. The 
topics covered, such as chemical database design, information searching and retrieval, Chemoinformatics 
applications of high-throughput screening (HTS), and molecular modeling, have rapidly become an 
essential component of the main body of Chemoinformatics.  

Virtual screening (VS) is one of the methods used to find similarity between chemical compounds 
[2]. Ligand-based virtual screening involves methods such as similarity searching (SS) which involves 
searching for compounds of interest by evaluating the likeliness (or similarity) of chemical database 
compounds to a given input (reference compound) using similarity coefficients [3]. It seeks similar 
chemical compounds and returns results ordered by which compounds tend to have the most similarity. 
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Given a query compound, similarity searching finds chemical compounds in the database that have a 
high percentage of unique features that are common to both. At the end of the search, a list of chemical 
compounds is obtained, ranked by most similar by sorting the list in descending order based on their 
similarity scores. Finally, the result of the similarity search will perform an optimizing precision/recall 
over sample of that result. 

Data fusion is a technique that combines the results of similarity searches [4]. A similarity search 
campaign with multiple queries of compounds using a database of compounds produces a series of 
results of individual searches that contain ranks [5]. These results are then combined (or fused) into a 
single ranking list. Combining the results was found to perform on average slightly better than 
individual searches since fusion provides more divergence in the ranks of search lists. 

Group fusion is one of the branches of data fusion techniques that are used in Chemoinformatics. It 
combines the results of similarity searches based on multiple query compounds on the same 
representation with a single similarity coefficient. One of the goals of using group fusion is to measure the 
degree of structural diversity of molecules. In a previous work by Hert et al. [6], they observed that the 
combination of fingerprints with group fusion of scores was more effective when applied in virtual 
screening. Whittle et al. [7] concluded that improvements were observed when using group fusion instead 
of conventional similarity searches. Good performance was recorded using the Tanimoto coefficient, while 
poor performance was obtained with Forbes, Russell-Rao, Simpson and Yule coefficients. 

The implementation of GPUs in Chemoinformatics has recently increased. Vogt and Bajorath [8] 
described in their work that a number of studies have focused on using GPUs to address computational 
efficiency of different virtual screening methods. The focal point of implementing GPUs has also 
broadened to include Chemoinformatics procedures such as similarity searching and clustering. Two 
additional factors contribute to motivate the development of efficient implementations: the popularity 
of high-dimensional fingerprints as descriptors (such as extended connectivity fingerprints or 
MolPrint2D), affordable GPUs that are cheaper in the market and the availability of application 
programming interfaces such as CUDA (compute unified device architecture) that spur the 
implementation of parallelization of codes. A recent work by Sanchez-Linares et al. [9] used grid kernels 
for virtual screening in GPU with 200 ligands increased the speed by 20× and 30× for both Fermi and 
Tesla architecture versus sequential grid kernel. Maggioni et al. [10] provided a very deep analysis 
regarding the advantages of using GPU by assessing five different similarity coefficients with binary 
fingerprints and floating point descriptors as compound representations. The results from their work 
showed a significant speedup of both low-end GPU machines and high-end GPU machines, thus 
solidifying the usefulness of GPUs in Chemoinformatics. 

Most of the work on multi-core and GPU is related to conventional similarity searching. In this 
paper, we discuss the implementation of group fusion on both platforms. This section provided the 
latest updates on similarity searching implementations on multi- and many-core platforms. The next 
section presents the background of similarity searching and group fusion. This is followed by parallel 
design methodology and implementation before proceeding to discussions on results and conclusions. 

 
 

2. Background 
This section presents a discussion of chemical databases, chemical compound fingerprints, similarity 

coefficients, similarity searching and group fusion, as well as the emergence of multi-core and GPU 
implementation of similarity searching. 
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2.1 Chemical Databases  
 

Chemical databases are also known as drug databases. These databases store information related to 
chemical compound bioactivity whether they were synthesized and proven to be active or inactive. 
There are a number of drug databases that are widely available such as the following: 
 World Drug Index (WDI) database is a collection of 80,000 marketed and developmental drugs 

worldwide sourced from 1,200 scientific journals and conference proceedings [11].  
 DrugBank is a public database consisting of compounds extracted from protein sequence 

databases, medicinal chemistry textbooks and chemical reference handbooks [12]. The 2011 
Release contains 6,827 drug entries, as specified on their website. 

 MDL Drug Data Report (MDDR) is a commercial database containing 185,844 (2008.1 Release) 
compounds that are newly launched or under development, extracted from patent literature, 
journals, meetings and congresses [13].  

 National Cancer Institute databases is a combination of four smaller databases that includes the 
general NCI database, the Plated Compounds database, the AIDS database and the cancer 
database, which sum up the total compounds residing in it to 213,000 [14]. 

 
2.2 Chemical Compound Fingerprints 
 

A chemical fingerprint is a unique pattern that indicates the presence of a particular chemical 
fragment in a chemical compound. It is based on a bitmap representation and binned into 512-bit or 
1024-bit [15,16]. In similarity search, the use of fingerprints can be very useful for finding related 
molecules (example shown in Fig. 1). Chemical compounds are stored in a chemical database as a string 
of SMILES (i.e., simplified molecular input line entry system) that are then converted to a chemical 
fingerprint. Creating a fingerprint requires the system to hash all the molecular features. Many distinct 
encodings of fingerprints can be generated depending on the software used. The work of Hert et al. [6] 
presented detailed literature on most of them. Software is made available by licensing from various 
vendors, one of which is Scitegic. Scitegic’s ECFP (extended connectivity fingerprints presence) 
fingerprint [17] is a type of circular fingerprint that encodes the presence and absence of fragments in a 
compound in binary where “1” denotes presence and “0” denotes absence [18]. They also developed 
extended connectivity fingerprints count (ECFC) fingerprint that encodes the number of times 
fragments appear in the compound that is also known as floating point descriptors. Fig. 1 shows an 
example of ECFP and ECFC fingerprints. Note that “4” illustrated at the end of both fingerprint labels 
denotes the bond radius since a circular fingerprint is developed to characterize fragments that are 
centered on an atom along with the bonds encircling it [18], in this case a 4-bond radius. 

 

 
Fig. 1. Example of chemical compound R represented in a 2D-chemical diagram encoded into SMILES, 
ECFP, and ECFC fingerprints. 
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2.3 Similarity Coefficients 
 

Given fingerprints of two chemical compounds, their similarity can be computed using a similarity 
coefficient. Similarity coefficients are actually formulae used to quantify the degree of resemblance 
between compounds. They can be grouped into two main classes: distance and association coefficients 
as described by Salim et al. [19]. Distance coefficients measure the dissimilarity between compounds 
[20] by calculating the distance between them in a descriptor space. Compounds are identical if their 
positions coincide, i.e., the distance between them is 0. Thus, as the distance increases, the probability of 
compounds being similar decreases. In contrast to distance coefficients, association coefficients 
measure the agreement (similarity) between two compounds [20] where the value also ranges from 0 to 
1, but 0 indicates no similar features in common, while 1 indicates an identical match [19]. Table 1 lists 
some widely used coefficients and their formulae as extracted from [21]. Among all coefficients, 
Tanimoto has been proven to be the most effective [22] and is constantly used, especially for binary 
fingerprints, since it uses the ratio of the intersecting set (or overlapping set) to determine the similarity 
of the sets. In this work, we also adopt Tanimoto as our coefficient. 

 
Table 1. Some of association (S) and distance (D) coefficients [21] 

Name 
Formula for continous variables  

(floating point vector) 
Formula for binary 

(dichotomous) variables 

Tanimoto 
coefficient 

= ∑∑ ( ) +∑ ( ) −∑  

Range: -0.333 to + 1 

=	 + −  

Range: 0 to 1 

Dice 
coefficient 

=	 2∑∑ ( ) +∑ ( )  

Range: -1 to + 1 

=	 2+  
Range: 0 to 1 

Cosine 
similarity 

= ∑∑ ( ) ∑ ( ) /  

Range: -1 to + 1 

=	√  

Range: 0 to 1 

Euclidean 
distance 

= ( − ) /
 

Range: 0 to ∞ 

=	√ + − 2  
Range: 0 to N 

Soergel 
distance 

= ∑ | |∑ max	( , ) 
Range: 0 to 1 

= + − 2+ −  

Range: 0 to 1 

 
 

2.4 Similarity Searching 
 

Similarity searching is a process of finding compounds in a database similar to the compound being 
sought (query). Given a query compound, a search is conducted by calculating the similarity with each 
compound in the database. Fig. 2 illustrates the process on compounds represented by ECFC4 with 
similarity calculated by the Tanimoto coefficient. Once the search is finished, database compounds are 
ranked based on their similarity score. Similarity evaluation is performed by taking the top 1% of the 
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ranked list and matching it against the known actives where a recall value is returned. Further details on 
recall can be found in [23]. We will not dwell much on the recall values because we are more interested 
in improving the timing of the searching process. 

 

 

Fig. 2. Illustration of similarity search using ECFP4 and Tanimoto. 
 

2.5 Group Fusion 
 

The group fusion algorithm consists of two main phases: the SS phase and the fusion phase. The basic 
procedure for group fusion is shown below (in Fig. 3), where n different reference compounds are used 
to search a database containing N compounds. The set of results (score or rank lists) of similarity scores 
Si(r,dj) for each database compound dj are then combined into a set of lists by using a selected fusion 
rule and then sorted in decreasing order. The complexity of the algorithm can be seen clearly from this 
algorithm, and the program has (n)2 complexity on the similarity search stage and (n) on the fusion 
stage. 

The use of the fusion rule is to combine the output result from the similarity stage (similarity searches 
through a database of textual documents) into a single list. A number of random n reference 
compounds are selected as queries that later will obtain n sets of similarity scores to be fused 
(combined). There are a number of fusion rules available, as listed in [24]. We list the CombMAX rule 
that is used in this work in Table 2. The overall group fusion process can be divided into three main 
stages as shown in Fig. 4: 
 Pre-processing: Reference compounds with queries and database compounds will be read and 

prepared before the start of the similarity search process.  
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 Similarity Search: Marks the start of the SS campaign where the similarity between reference 
compound and database compounds are calculated. The result is a set of score/rank lists.  

 Fusion: All sets of lists (obtained from the SS campaign) are combined into a unified list by using 
a selected fusion rule. 

 
Table 2. Fusion rules used in this work  

Fusion rule Formula 

CombMAX (MAX) )}(),...(),...(2),(1max{)( djSndjSidjSdjSdjSMAX   

 

 
Fig. 3. Group fusion algorithm. 

 

 
Fig. 4. High-level architecture of group fusion. 

 
 

3. Parallel Methods and Implementation 

It is a rule of thumb in any parallel design that a program undergoing parallelization must be an 
optimized one. This section discusses the optimization of the sequential program and proceeds to a 
detailed discussion on parallel design and implementation of group fusion. The main theme for 
optimization is to improve the time performance (elapsed time) on each stage by implementing a minor 
optimization approach. This approach is intended to focus on external methods as optimizer such as 
compiler and code compounds. GCC optimizer is used to compile the optimized group fusion. The 
reason for using GCC optimizer is to obtain faster compact codes and efficient code that can optimize 
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full usage of registers in the given architecture. There are 5 levels of optimizer options provided by 
GCC; “-O0”, “-O1”, “-O2”, “-O3” and “-Os” for this design, we used level 2 optimization, -O2. This 
level of GCC optimizer performs optimization that does not involve a space-speed tradeoff. We do not 
want to disturb and limit memory space since group fusion is an approach that uses large data (size of 
database) as knowledge, and each piece of data contains rich information (compound ID, fingerprints). 
This type of program needs more space for temporary memory space during run time; therefore, 
making full use of available space is beneficial to the program. 

 
3.1 OpenMP Method 
 

The parallel OpenMP design addressed two code sections for parallelization similarity search and 
fusion MAX stages. In the SS stage, the parallel part concentrated on the inner loop, while fusion MAX 
focused on the parallel reduction in the outer loop. Fig. 5 expressed the use of OpenMP pragma 
directives towards group fusion algorithm in both stages. A series of tests was conducted on the parallel 
OpenMP program in order to evaluate the strength of the parallelized code fragments (similarity search 
and fusion) with multicore CPU to perform faster computations. By evaluating and analyzing the 
results of this section, we could measure the performance of the parallel section with low cores in CPU. 
First the program was tested with 10 query compounds for evaluating general execution time. Later, 5 
query datasets consisting of 50, 100, 150 and 200 query compounds each, fingerprinted in floating point 
vector, were tested on the parallel OpenMP for measuring scalability of the program with different sizes 
of query. 

 
3.2 Parallel CUDA Method 
 

 
Fig. 5. Placement of pragma omp directives on similarity search and fusion MAX. 

 
One of the reasons for the CUDA programming language is to take advantage of GPU that is 

specialized for intensive computing and enabling highly parallel computation. Therefore, the GPU 
architecture design is devoted to data processing because the same program is executed for each 
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element; therefore, lower requirements are used for flow control and high arithmetic intensity. CUDA 
organizes parallel computations by using the abstraction of threads, blocks and grids. Threads are 
organized by blocks. A block is executed by the multiprocessing unit. 

A kernel in CUDA programming is an atomic function or lines of arithmetic operations that is called 
many times and performs a computation on each element of data in GPUs. To take advantage of GPU 
and CUDA, lightweight tasks are defined in the kernel. A CUDA kernel is identified by an identifier 
that instructs the CUDA compiler that the function should be run on the GPU. Functions can be called 
from the host (CPU). The other function qualifier denotes functions that can be called from other 
global or device functions but cannot be called from the host. A CUDA kernel must have void output; 
therefore, in order to get the result back from a device (GPU) to the host (CPU), the pointers input 
must be passed and overwritten. Indexing in CUDA is defined below: 

 
 

 
Data are stored in GPU memory using row-major order indexing. This method is used for describing 

and storing multi-dimensional arrays in linear memory. It follows the matrix notation for indexing, as 
rows are represented by the first index of two-dimensional arrays while columns are represented by the 
second index. Indexing is critical in order to get through each element correctly. In addition, due to 
caching, the traversing performance of an array is usually faster when stored in a linear way [25]. 
Therefore, data storage will be based on row-major order with a matrix form of multi-dimensional 
arrays as shown in Fig. 6. To sequentially traverse to a specific element of storage linear offset is used. 
From the start of the elements to any given element of Storage[height][width] can then be defined as: 

 

 
 

The idea of parallelization in a many-core architecture is to define a lightweight task in order to 
process the data as input. To make use of a lightweight task, the program code must be analyzed to 
identify the code fragment that represents the lightweight task for processing. The SS phase is 
embarrassingly parallel in nature; hence, it is suitable for executing as a lightweight task. Therefore, 
GPU processors (or called stream processors) will execute the SS lightweight process (as kernel) for 
calculating similarity between query and database compounds as a single small process. 

 

 
Fig. 6. Proposed data storage. 

columnwidthrowoffset  * (2)

xblockDimxblockIdxxthreadIdxidx .*..int   (1)
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In the Fusion (MAX) stage, fusion is solved using reduction. Reduction can be performed for 
specified operations on-the-fly without requiring additional storage thereby increasing the speed of the 
program. Fusion (MAX) works by finding the maximum similarity scores from the list of SS results that 
depicted similarity of two chemical compounds. The screening process to query for compounds against 
the database compounds during the similarity search stage produced a set of scores lists of database 
compounds. Applying the reduction operation can regain and speedup the program by taking 
advantage of the many-cores architecture in GPU with optimized dependency. Fig. 7 shows the overall 
CUDA kernel design of group fusion. In CUDA-based fusion (MAX) kernel, we avoid performing 
reduction of the first set of similarity search results so that the reduction operation will start only when 
two lists of SS results are made available. Later, the maximum scores from the operation will be 
overwritten or updated on the first list, represented as a vector. Different implementations of group 
fusion programs are available on https://bitbucket.org/codeoctopus/groupfusion under branch Seq-
stable, OpenMP and CUDA-stable. 

 

 

Fig. 7. Illustration of CUDA kernel design of group fusion. 
 
The overall CUDA implementation of our work is presented in a high-level view of parallelism flows 

as shown in Fig. 8. The program consists of host code and device code that runs on CPU and GPU, not 
as separate pieces of code but like a single program. The preprocessing phase runs on host code while 
the similarity searching and fusion phases run on device code. The steps for solving similarity searching 
with CUDA in parallel are described below (remember that host refers to the CPU system while device 
refers to GPU): 

1. Initialize SS CUDA preprocessing phase (includes all variable definitions and memory allocations 
for CUDA components) in the host 

2. Copy the database compounds from host to device memory 
3. Copy multiple query structures into device (GPU) memory 
4. Launch SS CUDA kernel and start performing similarity searching in GPU 
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Based on Fig. 8, the procedure for solving the fusion phase with CUDA in parallel runs after the 
similarity searching phase is completed. This phase is a reduction problem where multiple data are 
being merged and combine into single unified data. The procedures for solving parallel reduction are 
described below: 

1. Initialize the Fusion CUDA phase (includes all variable initialization and memory allocation for 
GPU) 

2. Regroup the sets of results (score/rank lists) into 2D arrays of row-major order data structures in 
linear memory 

3. Launch the Fusion CUDA kernel. Perform fusion with selected rules by combining the sets of 
lists into a unified list.  

4. Copy the result (unified list) from the device to the host (matrix storage). 
 
The algorithms and program were tested on an MDDR database. As in OpenMP, a set of 10, 50, 100, 

150 and 200 query compounds were taken randomly from the 5HT1A activity class for the search. The 
CUDA binary was compiled using GCC compiler 4.4.3 and NVIDIA CUDA compiler 4.2 in order to 
enable parallelism in the GPU. All tests were run on a GPGPU server (biruni.cs.usm.my) located at the 
School of Computer Sciences, Universiti Sains Malaysia. The Biruni server is equipped with 4 cores 
AMD Phenom II X4 810 processor, 4 GB of RAM, running on Linux machine Ubuntu 10.04.4 LTS. The 
server is equipped with Tesla C2050 GPU card and comes with compute capability 2.0. 

 

 
Fig. 8. Overall proposed CUDA design of group fusion. 
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4. Results and Discussion 

The performance of the group fusion implementation on a parallel platform is measured by the 
execution time and speedup. Speedup is an evaluation of the parallel algorithm compared to the 
sequential version. Speedup generally ranges between 0 and p, where p is the number of processors. The 
speedup, Sp, formula is defined in Eq. (3). 

 

                                                                             
(3)

 
 
In this equation, Ts and Tp denote the time taken to execute sequential and parallel versions to 

completion. Speedup has a strong connection with scalability. The scalability of the parallel algorithm is 
defined as the ability to achieve performance proportional to the number of processors used (as more 
processors are used, performance continues to improve). Therefore, computing speed is a good way to 
measure how the algorithm or program scales as more processors are used. The remainder of this 
section discusses our findings. Note that we did not include accuracy as a performance measure since 
our investigation is looking into the time improvement without trading off accuracy. Hence the 
accuracy of the algorithms is similar to those reported in [26]. 

 
4.1 General Evaluation 
 

Fig. 9 illustrated the comparison of the execution time between the sequential, parallel OpenMP and 
parallel CUDA, respectively. As shown, there were no changes in the pre-processing stage since the 
stage involved reading input (database and query structures) from text files. As expected, overall, the 
parallel CUDA outperformed both sequential and parallel OpenMP execution times with similar search 
and fusion stages. One of the reasons is that GPU and CUDA programming is purposely designed to 
suit each other. The parallel CUDA program executed with 102,540 (the number of database structures) 
threads simultaneously due to the high number of cores available (448 cores as we tested) in the GPU. 
The stages (both the similarity search performed in embarrassingly parallel and fusion MAX performed 
in parallel reduction) are specialized for an SIMD (single instruction multiple data) approach thus 
contributing to higher performance. 

 

 
Fig. 9. Comparison of sequential, parallel OpenMP and parallel CUDA for 10 query compounds. 
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In comparing parallel OpenMP with parallel CUDA, there was slightly lower performance in parallel 
OpenMP in the similarity stages while in the fusion MAX stages execution was more significant 
comparing fusion MAX to parallel CUDA. One of the reasons is OpenMP was limited to physical CPU 
processors (equipped with 4 cores only) and in addition, OpenMP performed well in the embarrassingly 
parallel approach compared to parallel reduction. This is because the embarrassingly parallel approach 
involved straight-forward computation and parallel reduction involved shared memory while 
performing read-write operations. Although OpenMP can more easily express parallelism with 
pragmatic directives, there is not much control for a developer to perform optimization in the low 
levels. Other than compiler optimization (that is provided in the compiler during compilation), it relies 
on the complexity of the arithmetic operation involved and should be well optimized. 

Based on Fig. 10, the speedup of parallel CUDA is reflected in the execution time in all given sizes of 
the query dataset. For instance, the speedup of parallel CUDA with the 10 query dataset is 10.07× faster 
than sequential implementation (with the same size of query dataset) while the corresponding parallel 
OpenMP is 2.30× faster. Most of the contribution to better performance and speedup of the parallel 
CUDA comes from the optimization in both CUDA kernel functions of similarity search and fusion 
MAX stages. The underlying lightweight tasks directly affected computation, while the threads were not 
overly used in order to reduce idle threads during execution. 

 

 
Fig. 10. Comparison of speedup between parallel OpenMP and parallel CUDA. 

 
4.2 Scalability Analysis 
 

This section addresses the evaluation results and analysis of the parallel OpenMP and parallel CUDA. 
The main objective is to measure the scalability of both parallel designs. Note that the sequential version 
was not included and discussed since it was out of scope and not fair for comparison with the parallel 
approach and design goals. 

Fig. 11 shows the overall comparison between two parallel designs; parallel OpenMP and parallel 
CUDA for the dataset of 10, 50, 100, 150 and 200 query structures. Both parallel designs were tested 
with different sizes of query dataset and the execution time and speedup were obtained. The experiment 
was repeated 5 times with each size of query datasets taken randomly from 5HT1A activity class 
compounds. 



Accelerating Group Fusion for Ligand-Based Virtual Screening on Multi-core and Many-core Platforms 

 

736 | J Inf Process Syst, Vol.12, No.4, pp.724~740, December 2016 

Overall, the parallel CUDA design outperformed OpenMP in execution time. Initially, the execution 
time of parallel CUDA stayed below 100 seconds, as we concluded that both similarity search and 
fusion MAX stages did benefit from the advantages of GPU with many cores while the parallel OpenMP 
approach only took up to 4 cores. We were not quite satisfied since the overall result (execution time) 
did not depict the reality of performance unless we looked deeply into the performance of different 
stages (similarity search and fusion MAX). 

 

 

Fig. 11. Comparison between OpenMP and CUDA on execution time. 
 

 

Fig. 12. Comparison between OpenMP and CUDA of similarity search stage. 
 

 

Fig. 13. Comparison between OpenMP and CUDA of fusion MAX stage. 
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Figs. 12 and 13 illustrate both similarity search and fusion MAX stages on both parallel CUDA and 
OpenMP. As seen in Fig. 12 on similarity search, parallel CUDA slightly outperformed parallel 
OpenMP in execution times. At this stage (similarity search), the operation is straight-forward and 
embarrassingly parallel, and thus, we do not see much significance of parallel CUDA compared with 
parallel OpenMP. There was no dependency on each SS operation; therefore, this parallel section did let 
allow both CUDA (in GPU) and OpenMP (pragmatic directive) advantages. In Fig. 12, we see a 
significant result from parallel CUDA compared to parallel OpenMP in the fusion MAX stage. Note 
that parallel reduction was involved in this stage and performed 10× faster than OpenMP, which is 2× 
faster than a sequential program. The margin between both parallel CUDA and parallel OpenMP will 
be greater when the query dataset is increased. One of the reasons that contribute to better parallel 
CUDA were the maximum number of threads used and the well-optimized arithmetic operation of 
fusion MAX in the CUDA kernel. CUDA APIs provide more control to the developer to seek an 
optimization approach thus making it possible to reduce flow control instructions (if, for, while) in the 
kernel. Therefore, the most intensive workload can be concentrated specifically in this stage while using 
maximum threads available in the GPU. 

 
4.3 Limitation of Parallel CUDA of Group Fusion 
 

Despite the parallel CUDA approach taking advantage of the GPUs architecture, there are a few 
limitations that lead to performance loss during computation. One of the factors is the use of threads in 
CUDA. Generally, the number of threads in CUDA can be controlled (by a developer using CUDA 
APIs). If the number of threads invoked from the kernel exceed the number of threads required for 
computation of the task, the excess threads will become idle. 

There was no mechanism or guideline on how to have flexible thread management that suits a 
particular task and solves a particular problem. This is because the program was made to suit certain 
tasks and problems and had been hard coded for specific optimization. Even though the parallel CUDA 
design lacked flexibility in terms of thread management, the specific optimization was applied in order 
for the CUDA kernel to make full use of available threads in GPU. 

Second, the communication cost for copying data from the host to device and from device to host 
increase execution time. The parallel CUDA takes nearly 156 seconds to copy data from host to device 
and nearly 8 seconds to copy data (the result) from device to host. These figures actually were much 
higher compared to the execution time for launching CUDA kernels. GPU has dedicated memory that 
has 5× to 10× faster bandwidth of CPU memory. Thus, copying data from the host (in CPU memory) to 
device (GPU memory) involved the PCI-E bandwidth passing through the South Bridge chip and then 
through the specific PCI-E device attached to the GPU card. Once the data are on the GPU card, any 
copies are very fast. Typically, a low-end GPU CUDA-capable card has internal bandwidth of 30–50 
Gb/s, while the actual achievable bandwidth over the PCI-E to main memory is less. Regardless, the 
bandwidth between GPU and CPU is hardware dependent and it is a matter of how much a developer 
could gauge and design with prior knowledge of the GPU architecture. 

 
 

5. Conclusion 
The performance issues of screening large database compounds and multiple query compounds in 

virtual screening are a wide concern in Chemoinformatics applications. This study investigates these 
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problems by choosing group fusion as a pilot model and presents efficient parallel solution in multi-
cores and many-cores architecture of GPU. The design involved solving two important stages of group 
fusion, SS and Fusion (MAX rule), while both addressed embarrassingly parallel and parallel reduction 
models. 

In the stage of fusion MAX, the CUDA binary program had shown better results for execution time 
(0.0004 s), parallel OpenMP (51.8682 s) and optimized sequential (135.9141 s). In the stage of Similarity 
Search, CUDA had shown better result for execution time (1.5749 s), parallel OpenMP (2.2550 s) and 
optimized sequential (7.3474 s). The proposed parallel CUDA design also proved to be scalable as N 
size of query compounds that were used produced N times complexity towards large database 
compounds. One of the reasons that contributed to this effectiveness was the availability of many-cores 
in GPU. The parallel CUDA was 5–10× faster than sequential and parallel OpenMP as both similarity 
search and fusion MAX stages had been CUDA-optimized. 
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