• Title/Summary/Keyword: Virtual Training Data

Search Result 189, Processing Time 0.028 seconds

Development and Usability Evaluation of A Virtual Reality-Based Vestibular Rehabilitation System for Balance Enhancement (균형감각 증진용 가상현실 기반 전정재활 시스템 개발 및 사용성 평가 )

  • Geun-Hong Park;Hyun-Min Lee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.4
    • /
    • pp.155-162
    • /
    • 2023
  • PURPOSE: The primary objective of this study was to develop a virtual reality-based vestibular rehabilitation system to enhance balance perception, target rehabilitation specialists, and evaluate its usability. A key goal was establishing a system refinement strategy based on the collected data. METHODS: We conducted a study involving ten adults aged 10 to 29 in Gwangju Metropolitan City to evaluate the usability of a virtual reality-based vestibular rehabilitation system to enhance balance perception. After introducing the product and explaining its use to the participants, balance assessments and training were conducted using computerized dynamic posturography (CDP) (also called the test of balance [TOB]). Subsequently, participants were given a questionnaire to evaluate subjective stability, operability, and satisfaction. Frequency analysis was utilized to determine the frequency of the variable values of the measurement items in the survey for descriptive statistics. RESULTS: We found that the average usability score was 2.587. When broken down by category, stability received an average rating of 2.725, operability scored an average of 2.783, and satisfaction averaged 2.454. These findings suggest that most participants experienced positive sentiments and considerable satisfaction. CONCLUSION: The study successfully developed a virtual reality-based vestibular rehabilitation system, which was an improvement over the previous model and addressed its shortcomings. The results show that users with vestibular impairments are satisfied and more engaged with this system, indicating that additional studies are warranted.

Technological Trends in Intelligent Cyber Range (지능형 사이버 훈련장의 기술 동향)

  • Yu, J.H.;Koo, K.J.;Kim, I.K.;Moon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.36-45
    • /
    • 2022
  • As the interest in achieving an intelligent society grows with the fourth industrial revolution's development, information and communications technologies technologies like artificial intelligence (AI), Internet of Things, virtual reality, information security, and blockchain technology are being actively employed in different fields for achieving an intelligent society. With these modifications, the information security paradigm in industrial and public institutions, like personal sensitive data, is quickly changing, and it is exposed to different cyber threats and breaches. Furthermore, as the number of cyber threats and breaches grows, so does the need for rapid detection and response. This demand can be satisfied by establishing cyber training programs and fostering experts that can improve cyber security abilities. In this study, we explored the domestic and international technology trends in cyber security education and training facilities for developing experts in information security. Additionally, the AI technology application in the cyber training ground, which can be established to respond to and deter cyber threats that are becoming more intelligent, was examined.

A comparison of deep-learning models to the forecast of the daily solar flare occurrence using various solar images

  • Shin, Seulki;Moon, Yong-Jae;Chu, Hyoungseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2017
  • As the application of deep-learning methods has been succeeded in various fields, they have a high potential to be applied to space weather forecasting. Convolutional neural network, one of deep learning methods, is specialized in image recognition. In this study, we apply the AlexNet architecture, which is a winner of Imagenet Large Scale Virtual Recognition Challenge (ILSVRC) 2012, to the forecast of daily solar flare occurrence using the MatConvNet software of MATLAB. Our input images are SOHO/MDI, EIT $195{\AA}$, and $304{\AA}$ from January 1996 to December 2010, and output ones are yes or no of flare occurrence. We consider other input images which consist of last two images and their difference image. We select training dataset from Jan 1996 to Dec 2000 and from Jan 2003 to Dec 2008. Testing dataset is chosen from Jan 2001 to Dec 2002 and from Jan 2009 to Dec 2010 in order to consider the solar cycle effect. In training dataset, we randomly select one fifth of training data for validation dataset to avoid the over-fitting problem. Our model successfully forecasts the flare occurrence with about 0.90 probability of detection (POD) for common flares (C-, M-, and X-class). While POD of major flares (M- and X-class) forecasting is 0.96, false alarm rate (FAR) also scores relatively high(0.60). We also present several statistical parameters such as critical success index (CSI) and true skill statistics (TSS). All statistical parameters do not strongly depend on the number of input data sets. Our model can immediately be applied to automatic forecasting service when image data are available.

  • PDF

Correlation Between Knee Muscle Strength and Maximal Cycling Speed Measured Using 3D Depth Camera in Virtual Reality Environment

  • Kim, Ye Jin;Jeon, Hye-seon;Park, Joo-hee;Moon, Gyeong-Ah;Wang, Yixin
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.262-268
    • /
    • 2022
  • Background: Virtual reality (VR) programs based on motion capture camera are the most convenient and cost-effective approaches for remote rehabilitation. Assessment of physical function is critical for providing optimal VR rehabilitation training; however, direct muscle strength measurement using camera-based kinematic data is impracticable. Therefore, it is necessary to develop a method to indirectly estimate the muscle strength of users from the value obtained using a motion capture camera. Objects: The purpose of this study was to determine whether the pedaling speed converted using the VR engine from the captured foot position data in the VR environment can be used as an indirect way to evaluate knee muscle strength, and to investigate the validity and reliability of a camera-based VR program. Methods: Thirty healthy adults were included in this study. Each subject performed a 15-second maximum pedaling test in the VR and built-in speedometer modes. In the VR speedometer mode, a motion capture camera was used to detect the position of the ankle joints and automatically calculate the pedaling speed. An isokinetic dynamometer was used to assess the isometric and isokinetic peak torques of knee flexion and extension. Results: The pedaling speeds in VR and built-in speedometer modes revealed a significantly high positive correlation (r = 0.922). In addition, the intra-rater reliability of the pedaling speed in the VR speedometer mode was good (ICC [intraclass correlation coefficient] = 0.685). The results of the Pearson correlation analysis revealed a significant moderate positive correlation between the pedaling speed of the VR speedometer and the peak torque of knee isokinetic flexion (r = 0.639) and extension (r = 0.598). Conclusion: This study suggests the potential benefits of measuring the maximum pedaling speed using 3D depth camera in a VR environment as an indirect assessment of muscle strength. However, technological improvements must be followed to obtain more accurate estimation of muscle strength from the VR cycling test.

The Effects of Virtual Simulation Program based Convergence Action Learning on Problem-Solving, Critical Thinking, Communication Skills, and Clinical Competency of the Nursing students (융합 액션러닝 기반 가상 시뮬레이션 프로그램이 간호대학생의 문제해결 능력, 비판적 사고, 의사소통 능력, 임상수행 능력에 미치는 효과)

  • Kim, Kyeng-Jin;Ha, Young-Sun;Park, Yong-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.489-499
    • /
    • 2022
  • This study examined the effect of convergence action learning based virtual simulation program for nursing college students. The study was carried out according a nonequivalent control group design. The study subjects were 54 nursing college students. The data collection period was from April 12, 2021 to June 18, 2021. Collected data were analyzed using SPSS PC+ 23.0. The experimental group had significantly different to communication skills, and clinical competency in comparison to the control group. This suggests that the convergence action learning based virtual simulation program can be applied as a way to increase nursing students' communication skills, and clinical competency.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.

The Effect of Social Support on Service Quality of Youth Training Facility Employees in Internet of Thing Environment: The Mediating Effect of Empowerment (사물인터넷 환경에서 청소년수련시설 종사자의 사회적 지지가 서비스 질에 미치는 영향: 임파워먼트의 매개효과 중심으로)

  • Youn, Ki-Hyok;Lee, Jin-Yoel
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • This study was intended to verify the parameter effects of empowerment in the effect of social support of the employees of youth training facilities on the quality of service. The purpose of this study was to provide basic data for improving the service quality of youth training facility workers. As a result of this study, first, social support and empowerment had a positive effect on service quality. Second, the partial mediating effect of empowerment can be confirmed. Based on the results of this study, the following suggestions were made. First, for the social support of the employees, the middle managers and facility managers of youth training facilities should use the Internet environment such as the Internet and smart phones. Second, in order to improve empowerment, support for information related to work, material support related to compensation, and evaluation support related to business processing should be provided. Third, to improve the empowerment of workers, it is necessary to augmented reality(AR), virtual reality(VR), and flip learning program using the Internet of Things environment.

A Method of Interoperating Heterogeneous Simulation Middleware for L-V-C Combined Environment (L-V-C 통합 환경 실현을 위한 이기종 시뮬레이션 미들웨어 연동 방안)

  • Cho, Kunryun;No, Giseop;Jung, Sihyun;Keerativoranan, Nopphon;Kim, Chongkwon
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.213-219
    • /
    • 2015
  • Simulation is used these days to verify the hypothesis or the new technology. In particular, National Defense Modeling & Simulation (M&S) is used to predict wartime situation and conduct the military training. National Defense M&S can be divided into three parts, live simulation, virtual simulation, and constructive simulation. Live simulation is based on the real environment, which allows more realistic sumulation; however, it has decreased budget efficiency, but reduced depictions of reality. In contrast, virtual and constructive simulations which are based on the virtual environment, have increased budget efficiency, but reduced depictions of reality. Thus, if the three parts of the M&S are combined to make the L-V-C combined environment, the disadvantages of each simulation can be complemented to increases the quality of the simulation. In this paper, a method of interworking heterogeneous simulation middeware for L-V-C combined environment is proposed, and the test results of interworking between Data Distribution Service (DDS) and High Level Architecture (HLA) are shown.

The Influence of Online Social Networking on Individual Virtual Competence and Task Performance in Organizations (온라인 네트워킹 활동이 가상협업 역량 및 업무성과에 미치는 영향)

  • Suh, A-Young;Shin, Kyung-Shik
    • Asia pacific journal of information systems
    • /
    • v.22 no.2
    • /
    • pp.39-69
    • /
    • 2012
  • With the advent of communication technologies including electronic collaborative tools and conferencing systems provided over the Internet, virtual collaboration is becoming increasingly common in organizations. Virtual collaboration refers to an environment in which the people working together are interdependent in their tasks, share responsibility for outcomes, are geographically dispersed, and rely on mediated rather than face-to face, communication to produce an outcome. Research suggests that new sets of individual skill, knowledge, and ability (SKAs) are required to perform effectively in today's virtualized workplace, which is labeled as individual virtual competence. It is also argued that use of online social networking sites may influence not only individuals' daily lives but also their capability to manage their work-related relationships in organizations, which in turn leads to better performance. The existing research regarding (1) the relationship between virtual competence and task performance and (2) the relationship between online networking and task performance has been conducted based on different theoretical perspectives so that little is known about how online social networking and virtual competence interplay to predict individuals' task performance. To fill this gap, this study raises the following research questions: (1) What is the individual virtual competence required for better adjustment to the virtual collaboration environment? (2) How does online networking via diverse social network service sites influence individuals' task performance in organizations? (3) How do the joint effects of individual virtual competence and online networking influence task performance? To address these research questions, we first draw on the prior literature and derive four dimensions of individual virtual competence that are related with an individual's self-concept, knowledge and ability. Computer self-efficacy is defined as the extent to which an individual beliefs in his or her ability to use computer technology broadly. Remotework self-efficacy is defined as the extent to which an individual beliefs in his or her ability to work and perform joint tasks with others in virtual settings. Virtual media skill is defined as the degree of confidence of individuals to function in their work role without face-to-face interactions. Virtual social skill is an individual's skill level in using technologies to communicate in virtual settings to their full potential. It should be noted that the concept of virtual social skill is different from the self-efficacy and captures an individual's cognition-based ability to build social relationships with others in virtual settings. Next, we discuss how online networking influences both individual virtual competence and task performance based on the social network theory and the social learning theory. We argue that online networking may enhance individuals' capability in expanding their social networks with low costs. We also argue that online networking may enable individuals to learn the necessary skills regarding how they use technological functions, communicate with others, and share information and make social relations using the technical functions provided by electronic media, consequently increasing individual virtual competence. To examine the relationships among online networking, virtual competence, and task performance, we developed research models (the mediation, interaction, and additive models, respectively) by integrating the social network theory and the social learning theory. Using data from 112 employees of a virtualized company, we tested the proposed research models. The results of analysis partly support the mediation model in that online social networking positively influences individuals' computer self-efficacy, virtual social skill, and virtual media skill, which are key predictors of individuals' task performance. Furthermore, the results of the analysis partly support the interaction model in that the level of remotework self-efficacy moderates the relationship between online social networking and task performance. The results paint a picture of people adjusting to virtual collaboration that constrains and enables their task performance. This study contributes to research and practice. First, we suggest a shift of research focus to the individual level when examining virtual phenomena and theorize that online social networking can enhance individual virtual competence in some aspects. Second, we replicate and advance the prior competence literature by linking each component of virtual competence and objective task performance. The results of this study provide useful insights into how human resource responsibilities assess employees' weakness and strength when they organize virtualized groups or projects. Furthermore, it provides managers with insights into the kinds of development or training programs that they can engage in with their employees to advance their ability to undertake virtual work.

  • PDF

Workflow Scheduling Using Heuristic Scheduling in Hadoop

  • Thingom, Chintureena;Kumar R, Ganesh;Yeon, Guydeuk
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.4
    • /
    • pp.264-270
    • /
    • 2018
  • In our research study, we aim at optimizing multiple load in cloud, effective resource allocation and lesser response time for the job assigned. Using Hadoop on datacenter is the best and most efficient analytical service for any corporates. To provide effective and reliable performance analytical computing interface to the client, various cloud service providers host Hadoop clusters. The previous works done by many scholars were aimed at execution of workflows on Hadoop platform which also minimizes the cost of virtual machines and other computing resources. Earlier stochastic hill climbing technique was applied for single parameter and now we are working to optimize multiple parameters in the cloud data centers with proposed heuristic hill climbing. As many users try to priorities their job simultaneously in the cluster, resource optimized workflow scheduling technique should be very reliable to complete the task assigned before the deadlines and also to optimize the usage of the resources in cloud.