• Title/Summary/Keyword: Virtual Simulation Test

Search Result 264, Processing Time 0.028 seconds

Development of a System to Convert a 3D Mesh Model in STL Format into OBJ Format (STL 3D 형식의 메쉬 모델을 형식으로 OBJ 변환하는 시스템 개발)

  • Yeo, Changmo;Park, Chanseok;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • The 3D mesh model is used in various fields, such as virtual reality, shape-based searching, 3D simulation, reverse engineering, 3D printing, and laser scanning. There are various formats for the 3D mesh model, but STL and OBJ are the most typical. Since application systems support different 3D mesh formats, developing technology for converting 3D mesh models from one format into another is necessary to ensure data interoperability among systems. In this paper, we propose a method to convert a 3D mesh model in STL format into the OBJ format. We performed the basic design of the conversion system and developed a prototype, then verified the proposed method by experimentally converting an STL file into an OBJ file for test cases using this prototype.

A Simulation System of Total Knee Replacement Surgery for Extracting 3D Surgical Parameters (슬관절 전치환술용 3차원 시술변수 추출 시스템)

  • Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.315-322
    • /
    • 2011
  • The goal of total knee replacement (TKR) surgery is to replace patient's knee joint with artificial implants in order to restore normal knee joint functions. Since mismatched knee implants often cause a critical balancing problem and short durability, designing a well-fitted implant to a patient's knee joint is essential to improve surgical outcomes. We developed a software system that three-dimensionally (3D) simulates TKR surgery based upon 3D knee models reconstructed from computed tomography (CT) imaging. The main task of the system was to extract precise 3D anatomical parameters of a patient's knee that were directly used to determine a custom fit implant and to virtually perform TKR surgery. The virtual surgery was simulated by amputating a 3D knee model and positioning the determined implant components on the amputated knee. The test result shows that it is applicable to derive surgical parameters, determine individualized implant components, rehearse the whole surgical procedure, and train medical staff or students for actual TKR surgery. The feasibility and verification of the proposed system is described with examples.

Dilation and Erosion Technique using a Inspection of the Catenary System Design (침식, 팽창기법을 이용한 전차선 검측 시스템의 설계)

  • Kim, Woo-Sang;Jung, Min-Yong;Kim, Ji-Yoon
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.701-704
    • /
    • 2006
  • The catenaries must guarantee the constant electricity to the trains, so that the safety and the estimate of fatigue degree and the inspection of abrasion degree should be done rapidly. This thesis proposes the system that can manage the performance/failure of the catenaries using the image process as the solution for the weak points of the existing inspection such as the decrease of immediateness and the lack of constancy in the human resources. This study simulates the ALD using VHSV (Virture HSV) which is the unreal HSV images, not getting the real HSV in ages to the image processing technique that repeats the erosion and the expansion of the images as the methods that can monitor the slight/critical defects of the catenaries as dealing with the result of the catenaries inspection images. The final ALD (Abnormal Line Detection) system is designed based on this simulation. I have demonstrated it with the VHSV (Virture HSV) virtual images as the materials of the test and inspected it through testing the defects of the catenaries for the thesis.

Vehicle Interior Noise Analysis Using Frequency Response Function Based Substructural Method (주파수응답함수의 부분구조합성 법을 이용한 차 실내소음 예측)

  • 허덕재;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.5-12
    • /
    • 2001
  • This paper presents the simulation methodology of the interior noise of vehicle using the frequency response function based hybrid modeling of the system which consists of multi-subsystem models obtained by the test or analysis. The complex systems such as a trimmed body of high modal density and a powertrain were modeled by using experimental data, and a sub-frame of a vehicle of low modal density was modeled by finite element data. Modeling of the whole system was executed and validated in the two stages. The first stave is combining the trimmed body and the sub-frame, and the second stage is attaching the powertrain, which is a exciting source, to the combined model of the first stage. The input force to the system was modeled as an equivalent force in the virtual space, which was obtained from impedance method using the FRFs of the powertrain and the responses. The interior noise predicted by the proposed method was very close to the direct measurement, which showed feasibility of the proposed modeling procedure. Since the methodology is easily applied to both the transfer path analysis of structure-borne noise and the analysis of noise contribution of a sub-system, it is expected to be a strong tool for design change of a vehicle in the earlier stare.

  • PDF

Design of Intelligent Servocontroller for Proportional Flow Control Solenoid Valve with Large Capacity (지능형 대용량 비례유량제어밸브 서보컨트롤러 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • As the technologies of electronic device have advanced these days, most of mechanical systems are designed with electronic control unit to take advantage of control parameter adaption to operating conditions and firmware flexibilities as well. On-board diagnosis, which detects the system malfunction and identifies potential source of error with its own diagnostic criteria, and fail-safe that can switch the mode of operation in view of recognized error characteristics enables easy maintenance and troubleshooting as well as system protection. This paper dealt with the development of diagnosis and fail-safe function for proportional flow control valve. All type of errors related to valve control system components are investigated and assigned to a specific hexadecimal codes. Cumulative error detection algorithm is applied in order for the sensitivity and reliability to be appropriate. Embedded simulator which runs simultaneously with system program provides the virtual error simulation environment for expeditious development of error detection algorithm. The diagnosis function was verified both with solenoid valve and embedded simulator test and it will enhance the valve control system monitoring function.

Image Segmentation Algorithm for Fish Object Extraction (어류객체 추출을 위한 영상분할 알고리즘)

  • Ahn, Soo-Hong;Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1819-1826
    • /
    • 2010
  • This paper proposes the image segmentation algorithm to extracts a fish object from a fish image for fish image retrieval. The conventional algorithm using gray level similarity causes wrong image segmentation result in the boundary area of the object and the background with similar gray level. The proposed algorithm uses the reinforced edge and the adaptive block-based threshold for the boundary area with weak contrast and the virtual object to improve the eroded or disconnected object in the boundary area without contrast. The simulation results show that the percentage of extracting the visual-fine object from the test images is under 90% in the conventional algorithm while it is 97.7% in the proposed algorithms.

A Research on the SILS System for Design and Analysis of Non-Communication Electronic Warfare Weapons based on the Engineering M&S Technique (공학급 M&S 기반 비통신 전자전무기체계 설계 분석 지원을 위한 SILS 시스템 연구)

  • Shin, Dongcho;Shin, Wookheon;Kim, Taehyun;Lee, Chiho;Jeong, Unseob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.272-280
    • /
    • 2021
  • We research and develop a SW-based virtual testing product that can be commonly used in the design/development of non-communication EW systems before the production of physical test products. Through this study, we have developed M&S technology to improve the accuracy of EW weapon system analysis/design and to verify and predict the performance of EW equipment, and to develop proven engineering module models and model base systems. It proposes a technology to build an EW M&S framework that can flexibly link/integrate various engineering/engage-level EW heterogeneous M&S systems.

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.

Performance Enhancement of Virtual War Field Simulator for Future Autonomous Unmanned System (미래 자율무인체계를 위한 가상 전장 환경 시뮬레이터 성능 개선)

  • Lee, Jun Pyo;Kim, Sang Hee;Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.109-119
    • /
    • 2013
  • An unmanned ground vehicle(UGV) today plays a significant role in both civilian and military areas. Predominantly these systems are used to replace humans in hazardous situations. To take unmanned ground vehicles systems to the next level and increase their capabilities and the range of missions they are able to perform in the combat field, new technologies are needed in the area of command and control. For this reason, we present war field simulator based on information fusion technology to efficiently control UGV. In this paper, we present the war field simulator which is made of critical components, that is, simulation controller, virtual image viewer, and remote control device to efficiently control UGV in the future combat fields. In our information fusion technology, improved methods of target detection, recognition, and location are proposed. In addition, time reduction method of target detection is also proposed. In the consequence of the operation test, we expect that our war field simulator based on information fusion technology plays an important role in the future military operation significantly.

Development of Real-Time Simulator for a Heavy Duty Diesel Engine (건설기계 디젤엔진용 실시간 시뮬레이터 개발)

  • Noh, Young Chang;Park, Kyung Min;Oh, Byoung Gul;Ko, Min Seok;Kim, Nag In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • Recently, the portion of electronic control in an engine system has been increasing with the aim of meeting the requirements of emissions and fuel efficiency of the engine system in the construction machinery industry. Correspondingly, the complexity of the engine management system (EMS) has increased. This study developed an engine HiLS system for reducing the cost and time required for function development for the EMS. The engine model for HiLS is composed of air, fuel, torque, and dynamometer models. Further, the mean value method is applied to the developed HiLS engine model. This model is validated by its application to a heavy-duty diesel engine equipped with an exhaust gas recirculation system and a turbocharger. Test results demonstrate that the model has accuracy greater than 90 and also verify the feasibility of the virtual calibration process.