• Title/Summary/Keyword: Virtual Reality Environment

Search Result 861, Processing Time 0.028 seconds

Exploring Application Ways of Virtual Reality Technology in Science Education (과학교육에서 가상현실 기법의 활용 모색)

  • Shim, Kew-Cheol;Park, Jong-Seok;Kim, Hyun-Sup;Kim, Jae-Hyun;Park, Young-Chul;Ryu, Hai-Il
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.4
    • /
    • pp.725-737
    • /
    • 2001
  • Virtual reality technology is very useful for the 21C science education, and is able to contribute to the development of new teaching and learning methods in science education. One of these computer-based technologies, virtual reality, is possible to use in many directions. It is a new communication medium that is receiving a lot of attention, and is usually identified by a collection of technological hardware. Virtual reality is defined as a highly interactive, computer-based, multimedia environment in which the user becomes the participant, with the computer in a virtual real world. A key feature of virtual reality is real-time interactivity, in that the computer is able to detect user inputs and instantaneously modify the virtual world. It is being used in a wide variety of fields including physics, chemistry, human biology, biomedical sciences, military, architecture, industry and the entertainment. In classroom, using science educational program developed by virtual reality technology can increase the interests of students, promote understanding of basic science concepts, help laboratory skills, and encourage creative learning for them.

  • PDF

Essential Computer Vision Methods for Maximal Visual Quality of Experience on Augmented Reality

  • Heo, Suwoong;Song, Hyewon;Kim, Jinwoo;Nguyen, Anh-Duc;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • The augmented reality is the environment which consists of real-world view and information drawn by computer. Since the image which user can see through augmented reality device is a synthetic image composed by real-view and virtual image, it is important to make the virtual image generated by computer well harmonized with real-view image. In this paper, we present reviews of several works about computer vision and graphics methods which give user realistic augmented reality experience. To generate visually harmonized synthetic image which consists of a real and a virtual image, 3D geometry and environmental information such as lighting or material surface reflectivity should be known by the computer. There are lots of computer vision methods which aim to estimate those. We introduce some of the approaches related to acquiring geometric information, lighting environment and material surface properties using monocular or multi-view images. We expect that this paper gives reader's intuition of the computer vision methods for providing a realistic augmented reality experience.

Sensing and Control Virtual Environment Using Zigbee Sensor Technology (지그비 센서를 활용한 가상현실 제어)

  • Joo, Jae-Hong;Lee, Hyeon-Cheol;Hur, Gi Taek;Kim, Eun Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.243-247
    • /
    • 2007
  • User interface is one of important factors to enhance one's presence in virtual reality systems. Due to the performance improvement of hardware, the virtual reality system is extensively utilized in games, broadcastings, educations, cultural contents, and so on. And, it is enlarged the necessity for researches on mobile interface to control the virtual reality system guaranteeing user's unrestricted movement. In this paper, we present a mobile interface, ZA sensor which is constructed with a Zigbee module and a Accelerometer to control the virtual environment. And, we propose a method of constructing the virtual reality system using the ZA sensor as a input device and practical applications of the system.

  • PDF

Visual Feedback System for Manipulating Objects Using Hand Motions in Virtual Reality Environment (가상 환경에서의 손동작을 사용한 물체 조작에 대한 시각적 피드백 시스템)

  • Seo, Woong;Kwon, Sangmo;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.9-19
    • /
    • 2020
  • With the recent development of various kinds of virtual reality devices, there has been an active research effort to increase the sense of reality by recognizing the physical behavior of users rather than by classical user input methods. Among such devices, the Leap Motion controller recognizes the user's hand gestures and can realistically trace the user's hand in a virtual reality environment. However, manipulating an object in virtual reality using a recognized user's hand often causes the hand to pass through the object, which should not occur in the real world. This study presents a way to build a visual feedback system for enhancing the user's sense of interaction between hands and objects in virtual reality. In virtual reality, the user's hands are examined precisely by using a ray tracing method to see if the virtual object collides with the user's hand, and when any collision occurs, visual feedback is given through the process of reconstructing the user's hand by moving the position of the end of the user's fingers that enter the object through sign distance field and reverse mechanics. This enables realistic interaction in virtual reality in real time.

Development of a Smartphone based Photo-realistic Virtual Reality Exposure Therapy System (스마트폰을 이용한 사진 기반 가상 현실 노출 치료 시스템 개발 및 시험적 적용)

  • Park, Jonghyeon;Park, Jin-young;Kim, Kwanguk Kenny
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.75-87
    • /
    • 2016
  • Virtual reality exposure therapy (VRET) has been used for a several decades. However, we are not aware any studies that used a smart-phone based virtual reality techniques. In this study, we suggested a new smart-phone based VRET that included photorealistic techniques. We also evaluated the current system with 32 healthy participants, and results suggested that the current system evoked different emotional valences in indoor/outdoor and familiar/unfamiliar environments. The meaning of current results and potential applications of VRET were discussed.

A technique of collision detection between virtual objects and real objects for increasing immersion of Augmented Reality system (증강현실 시스템에서 몰입감 증대를 위한 가상 및 실물 객체간의 충돌 처리 기법 개발)

  • Cho, In-Kyeong;Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.10 no.4
    • /
    • pp.521-527
    • /
    • 2009
  • This paper suggests a collision techniques for a higher reality in augmented reality by processing collision between a real object obtained through video frame input and a marker-based virtual object or a virtual object from Opengl. Augmented reality system is providing the visual information containing a virtual object added to the real environment and interactive interface between objects and between user and objects becomes a more concerning interest. But the collision problem is essential to the interactive interface and has to be solved first. Therefore, the proposed system suggests a solution for it to increase the realism and the immersion by validating the collision among a marker-based object, a virtual object from Opengl, and a real object obtained through web camera, that is, video frame.

  • PDF

A Study on Interaction of Gaze-based User Interface in Mobile Virtual Reality Environment (모바일 가상현실 환경에서의 시선기반 사용자 인터페이스 상호 작용에 관한 연구)

  • Kim, Mingyu;Lee, Jiwon;Jeon, Changyu;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.39-46
    • /
    • 2017
  • This study proposes a gaze-based user interface to provide user oriented interaction suitable for the virtual reality environment on mobile platforms. For this purpose, a mobile platform-based three-dimensional interactive content is produced, to test whether the proposed interface increases user satisfaction through the interactions in a mobile virtual reality environment. The gaze-based interface, the most common input method for mobile virtual reality content, is designed by considering two factors: the field of view and the feedback system. The performance of the proposed gaze-based interface is analyzed by conducting experiments on whether or not it offers motives for user interest, effects of enhanced immersion, differentiated formats from existing ones, and convenience in operating content.

The Virtual Environment Control using Real-time Graphic Deformation Algorithm (실시간 그래픽 디포메이션 알고리즘을 이용한 가상환경젱어)

  • 강원찬;김남오;최창주
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.309-314
    • /
    • 2004
  • In the established virtual-reality system, although it is possible to transact a faculty of sensation and graphic in a single PC, virtual object forcibly treated with rigid body for the reason of the huge amount of calculation, and the number of polygon is restricted. Furthermore, there is some difficulty in the financial aspect and a program field, because the existing virtual-reality system needs at least two workstations or super computers. In this study, the new force-reflecting algorithm called as "Proxy" and a finite element method of Hyperion are applied to this system in order to transact in real-time. Consequently, though the number of polygon, which brings about an obstacle is increased in the real-time graphic transaction, this system makes it possible to transact in the real-time, not being influenced by the size of the virtual object.

Research about CAVE Practical Use Way Through Culture Content's Restoration Process that Utilize CAVE (가상현실시스템(CAVE)을 활용한 문화 Content의 복원 과정을 통한 CAVE활용 방안에 대한 연구)

  • Kim, Tae-Yul;Ryu, Seuc-Ho;Hur, Yung-Ju
    • Journal of Korea Game Society
    • /
    • v.4 no.3
    • /
    • pp.11-20
    • /
    • 2004
  • Virtual reality that we have seen from the movies in 80's and 90's is hawing near based on the rapid progress of science together with a computer technology. Various virtual reality system developments (such as VRML, HMD FishTank, Wall Type, CAVE Type, and so on) and the advancement of those systems make for the embodiment of virtual reality that gives more sense of the real. Virtual reality is so immersive that makes people feel like they are in that environment and enable them to manipulate without experiencing the environment at first hand that is hard to experience in reality. Virtual reality can be applied to the spheres, such as education, high-level programming, remote control, surface exploration of the remote satellite, analysis of exploration data, scientific visualization, and so on. For some connote examples, there are training of a tank and an aeroplane operation, fumiture layout design, surgical operation practice, game, and so on. In these virtual reality systems, the actual operation of the human participant and virtual workspace are connected each other to the hardware that stimulates the five senses adequately to lend the sense of the immersion. There are still long way to go, however, before long it will be possible to have the same feeling in the virtual reality as human being can have by further study and effort. In this thesis, the basic definition, the general idea, and the kind of virtual reality were discussed. Especially, CAVE typed in reality that is highly immersive was analyzed in definition, and then the method of VR programming and modeling in the virtual reality system were suggested by showing the restoration process of Kyongbok Palace (as the content of the original form of the culture) that was made by KISTI(Korea Institute of Science and Technology Information) in 2003 through design process in virtual reality system. Through these processes, utilization of the immersive virtual reality system was discussed and how to take advantage of this CAVE typed virtual reality system at the moment was studied. In closing the problems that had been exposed in the process of the restoration of the cultural property were described and the utilization plan of the virtual reality system was suggested.

  • PDF