• Title/Summary/Keyword: Virtual Process

Search Result 1,576, Processing Time 0.031 seconds

Interactive virtual laboratory for unit operations and process systems engineering education in a Web environment (웹기반 화학 단위 공정 가상 실험시스템 개발)

  • 신동일;이경용;이의수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.313-313
    • /
    • 2000
  • Recently the number of lectures of offered as part of distance education courses is increasing due to the necessity of continuing education in this era of rapidly changing technologies. To promote this, Web-based distance education systems have been developed and put into practical use. To step further, we propose a virtual space, distance education platform called interactive virtual laboratory. The proposed system is expected to overcome many obstacles in performing the unit operations laboratory at the current setting. The server/client system implementation was programmed with ASP and Visual Basic. The availability of simple and efficient technological supports for dissemination and remote use of virtual lab systems supports more experimental practices regardless of the number of participating students and their locations. Variety of instruments, process equipments and lab procedures are being added to make it a complete package of virtual lab fur undergraduate unit operations course.

  • PDF

Development of a Virtual Machine Tool-Part 4: Mechanistic Cutting Force Model, Machined Surface Error Model, and Feed Rate Scheduling Model

  • Yun, Won-Soo;Ko, Jeong-Hoon;Cho, Dong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2003
  • A virtual machine tool (VMT) is presented in this two-part paper. In Part 1, the analytical foundation for a virtual machining system is developed, which is envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes. The VHT system undergoes "pseudo-real machining", before actual cutting with a CNC machine tool takes place, to provide the proper cutting conditions for process planners and to compensate or control the machining process in terms of the productivity and attributes of the products. The attributes can be characterized by the machined surface error, dimensional accuracy, roughness, integrity, and so forth. The main components of the VMT are the cutting process, application, thermal behavior, and feed drive modules. In Part 1, the cutting process module is presented. When verified experimentally, the proposed models gave significantly better prediction results than any other methods. In Part 2 of this paper, the thermal behavior and feed drive modules are developed, and the models are integrated into a comprehensive software environment.vironment.

Development of a Virtual Machine Tool - Part 1 (Cutting Force Model, Machined Surface Error Model and Feed Rate Scheduling Model) (가상 공작기계의 연구 개방 - Part 1 (절삭력 모델, 가공 표면 오차 모델 및 이송 속도 스케줄링 모델))

  • Yun, Won-Su;Go, Jeong-Hun;Jo, Dong-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.74-79
    • /
    • 2001
  • In this two-part paper, a virtual machine tool (VMT) is presented. In part 1, the analytical foundation of a virtual machining system, envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes, is developed. The VMT system purposes to experience the pseudo-real machining before real cutting with a CNC machine tool, to provide the proper cutting conditions for process planners, and to compensate or control the machining process in terms of the productivity and attributes of products. The attributes can be characterized with the machined surface error, dimensional accuracy, roughness, integrity and so forth. The main components of the VMT are cutting process, application, thermal behavior and feed drive modules. In part 1, the cutting process module is presented. The proposed models were verified experimentally and gave significantly better prediction results than any other method. The thermal behavior and feed drive modules are developed in part 2 paper. The developed models are integrated as a comprehensive software environment in part 2 paper.

  • PDF

A Virtual Manufacturing System the Integration of Process Planning and Scheduling (공정계획 및 일정계획 통합을 위한 가상 생산 시스템)

  • Park, Ji-Hyung;Yum, Ki-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.161-166
    • /
    • 1999
  • Virtual Manufacturing System(VMS) is a computer model that represents the precise and whole structure of manufacturing systems and simulates their physical and logical behavior in operation. In this paper, a real time simulation for the virtual factory is proposed to integrate a process planning with scheduling under distributed environments. In order to communicate the information under distributed environments, we use a server/client concept using socket program and internet.

  • PDF

OPTIMISATION OF MANUAL WELDS USING VIRTUAL AND AUGMENTED REALITY

  • Tschirner, Petra;Graser, Axel
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.289-294
    • /
    • 2002
  • This paper presents first results of an interdisciplinary research project for the development of an "intelligent" welding helmet. Contrary to conventional welding helmets the system allows a detailed observation both of the welding process and the environment. By methods of virtual and augmented reality additional information can be supplied to the welder. The system can be used for welding preparation, welding process observation and quality assurance.

  • PDF

Development of Virtual Assembly Process for the Fabrication of Micro-fluidic Systems Using Micro-stereolithography Technology (마이크로 광 조형 기술을 이용하여 미세 유체 시스템을 개발하기 위한 가상 조립 공정의 개발)

  • 강현욱;이인환;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.304-309
    • /
    • 2004
  • As it is difficult to construct a micro-fluidic system composed of micro-mixers, micro-channels and/or micro-chambers in a single process, an assembly process is typically used. The assembling and bonding of micro-parts, however, introduces other problems. In this work, a virtual assembly process was developed that can be used to design various micro-fluidic systems before actual fabrication commences. In the process, the information required for the micro-stereolithography process is generated automatically. Consequently, complex micro-fluidic systems can be fabricated in a single process, thereby avoiding the need for additional assembly or bonding processes. Using the developed process, several examples were fabricated.

  • PDF

FPSO Cargo Pumping 시스템 가상운전 시스템 개발

  • Nam, Ki-Il;Han, Ki-Hun;Chang, Kwang-Pil;Oh, Tae-Young;Chang, Dae-Jun;Song, Seok-Ryong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.251-252
    • /
    • 2006
  • This study developed the virtual operation system for the hydraulic pump system for marine usage. The scope of this study is to develop a process dynamic simulation model for the hydraulic pump system for marine usage, to investigate the process dynamic characteristics using the models, to accomplish the logic diagram for the PLC control and to achieve a human-machine interface (HMI) for the convenience of operators to monitor and control the process. The virtual operation system provides a virtual operation environment for the pumping system, enabling the operators to simulate the change of process variables. The system will assist in developing advanced control logics and then optimal design of the system.

  • PDF

A Development of the Virtual Mockup System(ViMS) for a System Design Review of Aircraft (항공기 체계 설계 검토용 가상목업시스템 개발)

  • Kim, Cheon-Young;Park, Young-Keun;Kim, Sung-Rae;Kim, Mun-Yeol;Reu, Tae-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.97-104
    • /
    • 2007
  • In this paper, we have proposed an integrated aircraft development environment which can support virtual design and development for Systems Engineering and IPPD(Integrated Product and Process Development). We have also proposed the ViMS(Virtual Mockup System) which can perform a system design review on an integrated aircraft development environment. The ViMS is an integrated virtual design support system with immersive design review functionality to make a virtual mockup instead of a physical mockup through the virtual reality technology. The functionality of the ViMS consists design data management, design technology, design verification, and design assessment. We have described the detailed development artifact, case studies and conclusions of using the ViMS functionality.

OTP-Based Dynamic Authentication Framework for Virtual Machine Migration (가상머신 마이그레이션을 위한 OTP 기반 동적인증 프레임워크)

  • Lee, Eun-Ji;Park, Choon-Sik;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.315-327
    • /
    • 2017
  • Security threats such as unauthorized access and data tampering can occur during the virtual machine migration process. In particular, since virtual machine migration requires users to transfer important data and infrastructure information, it is relatively risky to other cloud services in case of security threats. For this reason, there is a need for dynamic authentication for virtual machine migration. Therefore, this paper proposes an OTP-based dynamic authentication framework to improve the vulnerabilities of the existing authentication mechanism for virtual machine migration. It consists of a virtual machine migration request module and an operation module. The request module includes an OTP-based user authentication process and a migration request process to a data center when a user requests a migration. The operation module includes a secure key exchange process between the data centers using SPEKE and a TOTP-based mutual authentication process between the data center and the physical server.

An Internet-based Hybrid Design Methodology for Collaborative Virtual Design Studio (인터넷 기반 가상 디자인 스튜디오에서 하이브리드 건축 협업 설계 방법론에 관한 연구)

  • 박재완;최진원
    • Korean Institute of Interior Design Journal
    • /
    • no.40
    • /
    • pp.158-164
    • /
    • 2003
  • The rapid development of information technology has much influence on architectural design. Collaboration beyond time and space has been possible by networking the work environment and digital products. Thus, the virtual design studio on architectural design is getting more important than ever before. This research investigates a virtual design studio methodology for effective collaboration. The building design process and the communication model are studied and possible modes of design collaboration are defined. This paper proposes an internet-based Virtual Reality(VR) communication tool as well as new design methodology that we call the 'Hybrid Design Methodology'. We expect that this design methodology will dramatically increase design feedbacks, and thus results in better design alternatives. There are two issues involved in developing the collaborative virtual design studio: 1) an intuitive interface that presents collaborative relations, and 2) three-dimensional computer-mediated communication tool using sketch as a modeling method. Further research issues identified at the end of the research include developing algorithms that translate mapping images to polygons for the drafting phase in the design process.