• Title/Summary/Keyword: Virtual Memory Tree

Search Result 9, Processing Time 0.026 seconds

Design and Implementation of a Main-Memory Database System for Real-time Mobile GIS Application (실시간 모바일 GIS 응용 구축을 위한 주기억장치 데이터베이스 시스템 설계 및 구현)

  • Kang, Eun-Ho;Yun, Suk-Woo;Kim, Kyung-Chang
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.11-22
    • /
    • 2004
  • As random access memory chip gets cheaper, it becomes affordable to realize main memory-based database systems. Consequently, reducing cache misses emerges as the most important issue in current main memory databases, in which CPU speeds have been increasing at 60% per year, compared to the memory speeds at 10% per you. In this paper, we design and implement a main-memory database system for real-time mobile GIS. Our system is composed of 5 modules: the interface manager provides the interface for PDA users; the memory data manager controls spatial and non-spatial data in main-memory using virtual memory techniques; the query manager processes spatial and non-spatial query : the index manager manages the MR-tree index for spatial data and the T-tree index for non-spatial index : the GIS server interface provides the interface with disk-based GIS. The MR-tree proposed propagates node splits upward only if one of the internal nodes on the insertion path has empty space. Thus, the internal nodes of the MR-tree are almost 100% full. Our experimental study shows that the two-dimensional MR-tree performs search up to 2.4 times faster than the ordinary R-tree. To use virtual memory techniques, the memory data manager uses page tables for spatial data, non- spatial data, T-tree and MR-tree. And, it uses indirect addressing techniques for fast reloading from disk.

An Efficient Flash Memory B-Tree Supporting Very Cheap Node Updates (플래시 메모리 B-트리를 위한 저비용 노드 갱신 기법)

  • Lim, Seong-Chae
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.706-716
    • /
    • 2016
  • Because of efficient space utilization and fast key search times, B-trees have been widely accepted for the use of indexes in HDD-based DBMSs. However, when the B-ree is stored in flash memory, its costly operations of node updates may impair the performance of a DBMS. This is because the random updates in B-tree's leaf nodes could tremendously enlarge I/O costs for the garbage collecting actions of flash storage. To solve the problem, we make all the parents of leaf nodes the virtual nodes, which are not stored physically. Rather than, those nodes are dynamically generated and buffered by referring to their child nodes, at their access times during key searching. By performing node updates and tree reconstruction within a single flash block, our proposed B-tree can reduce the I/O costs for garbage collection and update operations in flash. Moreover, our scheme provides the better performance of key searches, compared with earlier flash-based B-trees. Through a mathematical performance model, we verify the performance advantages of the proposed flash B-tree.

Diary Application Design Based Augmented Reality Using Tree(metaphor) (나무를 메타포로 하는 증강현실 기반 일상다이어리 어플리케이션 기획 및 설계)

  • Kim, Yoo-bin;Roh, Jong-hee;Lee, Ye-Won;Lee, Hyo-Jeong;Park, Jung Kyu;Park, Su e
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.201-204
    • /
    • 2017
  • People live in their everyday life busy with studies, part-time jobs, and searching for an ideal job. In their busy routine, they try to find time for themselves and expose their emotions through diverse social network services(SNS). We made a service that we can plant a virtual tree in places we daily visit and go by. You can keep note on the virtual tree and look through the past records. It is a reality based mobile application service that can be used like a diary.In this project we chose the tree as the metaphor and tried to express time passing in a specific place. As our memory is a part of our daily life, we emphasized the meaning of space important.

  • PDF

Action Recognition with deep network features and dimension reduction

  • Li, Lijun;Dai, Shuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.832-854
    • /
    • 2019
  • Action recognition has been studied in computer vision field for years. We present an effective approach to recognize actions using a dimension reduction method, which is applied as a crucial step to reduce the dimensionality of feature descriptors after extracting features. We propose to use sparse matrix and randomized kd-tree to modify it and then propose modified Local Fisher Discriminant Analysis (mLFDA) method which greatly reduces the required memory and accelerate the standard Local Fisher Discriminant Analysis. For feature encoding, we propose a useful encoding method called mix encoding which combines Fisher vector encoding and locality-constrained linear coding to get the final video representations. In order to add more meaningful features to the process of action recognition, the convolutional neural network is utilized and combined with mix encoding to produce the deep network feature. Experimental results show that our algorithm is a competitive method on KTH dataset, HMDB51 dataset and UCF101 dataset when combining all these methods.

Meltdown Threat Dynamic Detection Mechanism using Decision-Tree based Machine Learning Method (의사결정트리 기반 머신러닝 기법을 적용한 멜트다운 취약점 동적 탐지 메커니즘)

  • Lee, Jae-Kyu;Lee, Hyung-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.209-215
    • /
    • 2018
  • In this paper, we propose a method to detect and block Meltdown malicious code which is increasing rapidly using dynamic sandbox tool. Although some patches are available for the vulnerability of Meltdown attack, patches are not applied intentionally due to the performance degradation of the system. Therefore, we propose a method to overcome the limitation of existing signature detection method by using machine learning method for infrastructures without active patches. First, to understand the principle of meltdown, we analyze operating system driving methods such as virtual memory, memory privilege check, pipelining and guessing execution, and CPU cache. And then, we extracted data by using Linux strace tool for detecting Meltdown malware. Finally, we implemented a decision tree based dynamic detection mechanism to identify the meltdown malicious code efficiently.

A Multibit Tree Bitmap based Packet Classification (멀티 비트 트리 비트맵 기반 패킷 분류)

  • 최병철;이정태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3B
    • /
    • pp.339-348
    • /
    • 2004
  • Packet classification is an important factor to support various services such as QoS guarantee and VPN for users in Internet. Packet classification is a searching process for best matching rule on rule tables by employing multi-field such as source address, protocol, and port number as well as destination address in If header. In this paper, we propose hardware based packet classification algorithm by employing tree bitmap of multi-bit trio. We divided prefixes of searching fields and rule into multi-bit stride, and perform a rule searching with multi-bit of fixed size. The proposed scheme can reduce the access times taking for rule search by employing indexing key in a fixed size of upper bits of rule prefixes. We also employ a marker prefixes in order to remove backtracking during searching a rule. In this paper, we generate two dimensional random rule set of source address and destination address using routing tables provided by IPMA Project, and compare its memory usages and performance.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.

Real-Time Terrain Visualization with Hierarchical Structure (실시간 시각화를 위한 계층 구조 구축 기법 개발)

  • Park, Chan Su;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.311-318
    • /
    • 2009
  • Interactive terrain visualization is an important research area with applications in GIS, games, virtual reality, scientific visualization and flight simulators, besides having military use. This is a complex and challenging problem considering that some applications require precise visualizations of huge data sets at real-time rates. In general, the size of data sets makes rendering at real-time difficult since the terrain data cannot fit entirely in memory. In this paper, we suggest the effective Real-time LOD(level-of-detail) algorithm for displaying the huge terrain data and processing mass geometry. We used a hierarchy structure with $4{\times}4$ and $2{\times}2$ tiles for real-time rendering of mass volume DEM which acquired from Digital map, LiDAR, DTM and DSM. Moreover, texture mapping is performed to visualize realistically while displaying height data of normalized Giga Byte level with user oriented terrain information and creating hill shade map using height data to hierarchy tile structure of file type. Large volume of terrain data was transformed to LOD data for real time visualization. This paper show the new LOD algorithm for seamless visualization, high quality, minimize the data loss and maximize the frame speed.