• Title/Summary/Keyword: Virtual MIMO

Search Result 31, Processing Time 0.018 seconds

A cooperative virtual MIMO system for moving networks (이동 네트워크를 위한 협력 가상 MIMO 시스템)

  • Kim, Jung-Hyun;Kim, Il-Hwan;You, Cheol-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, we propose a cooperative communication scheme for high transmission efficiency and coverage extension under multipath fading environment of moving networks. The proposed scheme uses a Space-Time Block Code (STBC) for improvement of receiving performance by using virtual Multiple-Input Multiple-Output(MIMO) transmit diversity. It can also achieve faster transmission time than a conventional scheme by using virtual MIMO configurations. Simulation results have shown that the proposed scheme provides SNR improvement and has faster transmission time compared to the conventional scheme, since it can utilize the good properties of spatial diversity and coding gain by using virtual MIMO configuration. In this paper, we propose simulations of UWB communication system to show validity by using the MATLAB.

Uplink Power Control Scheme for Virtual MIMO Multi-Cell Systems (가상 MIMO 다중 셀 시스템을 위한 역방향 전력 제어 방법)

  • Yang, Janghoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.535-544
    • /
    • 2013
  • This paper considers an uplink power control scheme for a virtual multi-input multi-output (MIMO) multi-cell system where multiple mobile stations with single transmit antenna form a virtual MIMO link. Unlike the conventional approach of the game theoretic formulation to add a power penalty term to improve the performance, a constraint on the total effective interference power is introduced to the maximization of the utility function of the transmission rate with linear receive beamforming. Introducing inertia, we show that the proposed power control is guaranteed to converge. The simulation results verify that the proposed power allocation can significantly improve the performance in an interference limited multi-cell system.

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

Enhancing Irregular Repetition Slotted ALOHA with Polarization Diversity in LEO Satellite Networks

  • Su, Jingrui;Ren, Guangliang;Zhao, Bo;Ding, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3907-3923
    • /
    • 2020
  • An enhanced irregular repetition slotted ALOHA (IRSA) protocol is proposed by using polarization characteristic of satellite link and MIMO detection in low earth orbit (LEO) satellite networks, which is dubbed polarized MIMO IRSA (PM-IRSA). In the proposed scheme, one or two packets in one slot can be decoded by employing polarized MIMO detection, and more than two collided packets in multiple slots which can construct the virtual MIMO model can be decoded by the MIMO detection algorithm. The performance of the proposed scheme is analyzed with the density evolution (DE) approach and the degree distribution is optimized to maximize the system throughput by using a differential evolution. Numerical results certify our analysis and show that the normalized throughput of the proposed PM-IRSA can achieve 1.89 bits/symbol.

A Subcarrier-based Virtual Multiple Antenna Technique for OFDM Cellular Systems (OFDM 셀룰러 시스템에서 부반송파 기반의 가상 다중안테나 기법)

  • Lee, Kyu-In;Ko, Hyun-Soo;Woo, Kyung-Soo;Ko, Yo-Han;Kim, Yeong-Jun;Ahn, Jae-Young;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.981-990
    • /
    • 2006
  • In this paper, we introduce the concept of a subcarrier-based virtual multiple antennas (SV-MIMO) for OFDM cellular systems, where the multiple antenna techniques are performed on a set of subcarriers, not on the actual multiple antennas. The virtual multiple antenna system can support multiple users simultaneously as well as reduce inter-cell interference (ICI) form adjacent cells with a single antenna. Also, this technique is easily extended to multiple antenna environments. The virtual multiple antenna techniques can be divided into a virtual smart antenna technique and a virtual MIMO technique. Especially, this method effectively reduces ICI at cell boundary with frequency reuse factor equal to 1, and can support flexible resource allocation depending on the amount of interference. It is shown by simulation that the proposed method is superior to conventional method under the same condition of data transmission.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

Scheduling for Virtual MIMO in Single Carrier FDMA (SC-FDMA) System

  • Kim, Jinwoo;Hwang, In Seok;Kang, Chung Gu
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 2015
  • In this paper, we consider a joint frequency-domain scheduling and user-pairing problem for virtual MIMO in the single carrier frequency division multiple access (SC-FDMA) system, e.g., the uplink transmission for third generation partnership project-long term evolution (3GPP-LTE) standard. Due to the subcarrier adjacency constraint inherent to SC-FDMA, its complexity becomes unmanageable. We propose a greedy heuristic algorithm for PF scheduling so as to deal with the complexity issue in this joint problem. It has been shown that its performance can reach up to 90% of its upper bound.

Cooperative Communications Based on Virtual MIMO Transmission for Vehicles (네트워크 코딩을 활용한 가상 다중 안테나 시스템 기반 차량용 협력 통신 기술)

  • Kim, Ilhwan;Kim, Junghyun;Ji, Soonbae;You, Cheolwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, we propose a cooperative vehicle communication scheme for high transmission efficiency and coverage extension under multipath fading environment of moving vehicle networks. The proposed scheme uses a Network coding scheme for improvement of receiving performance by using virtual Multiple-Input Multiple-Output(MIMO) transmit diversity. Simulation results have shown that the proposed scheme also provides alleviated Inter Symbol Interference(ISI) and Inter Channel Interference(ICI) as well as Signal-to-Noise Ratio(SNR) improvement and improve 3dB compared to the conventional scheme, since it can utilize the good properties of spatial diversity and coding gain by using virtual MIMO configuration. In this paper, we propose simulations of Ultra-Wideband(UWB) communication system to show validity by using the MATLAB.

A Vector Perturbation Based User Selection for Multi-antenna Downlink Channels (다중안테나 하향채널에서의 Vector Perturbation 기반 사용자 선택 기법)

  • Lee, Byung-Ju;Lim, Chae-Hee;Shim, Byong-Hyo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.977-985
    • /
    • 2011
  • Recent works on multiuser transmission techniques have shown that the linear growth of capacity in single user MIMO system can be translated to the multiuser MIMO scenario as well. In this paper, we propose a method pursuing performance gain of vector perturbation in multiuser downlink systems. Instead of employing maximum number of mobile users for communication, we use small part of them as virtual users for improving reliability of users participating communication. By controlling parameters of virtual users including information and perturbation vector, we obtain considerable improvement in the effective SNR, resulting in large gain in bit error rate performance. Simulation results on the realistic multiuser downlink systems show that the proposed method brings substantial performance gain over the standard vector perturbation with marginal overhead in computations.

An Intercell Interference Reduction Technique for OFDM-based Cellular Systems Using Virtual Multiple Antenna (OFDM 기반 셀룰러 시스템에서 가상 다중안테나를 이용한 셀간 간섭 감쇄 기법)

  • Lee Kyu-In;Ko Hyun-Soo;Ahn Jae-Young;Cho Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.32-38
    • /
    • 2006
  • In this paper, an intercell interference (ICI) reduction technique is proposed for OFDM-based cellular systems using the concept of virtual multiple antenna where multiple antenna techniques are performed on a set of subcarriers, not on the actual antenna array. The proposed technique is especially effective for user terminals with a single antenna at cell boundary in fully-loaded OFDM cellular systems with a frequency reuse factor equal to 1. Proposed ICI reduction techniques developed for SISO and MISO environments are shown to be robust to symbol timing offsets and efficient for various cell environments by adjusting group size depending on the number of adjacent cells. Also, the concept of a virtual signature randomizer (VSR) is introduced to improve channel separability in the virtual MIMO approach. It is shown by simulation that the proposed techniques are effective in reducing ICI and inter-sector interference compared with the conventional methods.