• Title/Summary/Keyword: Virtual Honeynet

Search Result 5, Processing Time 0.014 seconds

A Development of Novel Attack Detection Methods using Virtual Honeynet (Virtual Honeynet을 이용한 신종공격 탐지기술 개발)

  • Kang, Dae-Kwon;Euom, Ieck-Chae;Kim, Chun-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.406-411
    • /
    • 2010
  • A honeynet is a closely monitored computing resource that we want to be probed, attacked or compromised. More precisely, a honeypot is "an information system resource whose value lies in unauthorized or illicit use of that resource The value of honeynet is weighed by the information that can be obtained from it. but It's very difficult to deploy Honeynet in Real World, So I focused on Virtual Honeynet. The strength of virtual honeynet is scalability and ease of maintenance. It is inexpensive to deploy and accessible to almost everyone. Compared with physical honeypots, this approach is more lightweight. Instead of deploying a physical computer system that acts as a honeypot, we can also deploy one physical computer that hosts several virtual machines that act as honeypots.

The Case of Novel Attack Detection using Virtual Honeynet (Virtual Honeynet을 이용한 신종공격 탐지 사례)

  • Kim, Chun-Suk;Kang, Dae-Kwon;Euom, Ieck-Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.279-285
    • /
    • 2012
  • Most national critical key infrastructure, such like electricity, nuclear power plant, and petroleum is run on SCADA (Supervisory Control And Data Acquisition) system as the closed network type. These systems have treated the open protocols like TCP/IP, and the commercial operating system, which due to gradually increasing dependence on IT(Information Technology) is a trend. Recently, concerns have been raised about the possibility of these facilities being attacked by cyber terrorists, hacking, or viruses. In this paper, the method to minimize threats and vulnerabilities is proposed, with the virtual honeynet system architecture and the attack detection algorithm, which can detect the unknown attack patterns of Zero-Day Attack are reviewed.

Cybertrap : Unknown Attack Detection System based on Virtual Honeynet (Cybertrap : 가상 허니넷 기반 신종공격 탐지시스템)

  • Kang, Dae-Kwon;Hyun, Mu-Yong;Kim, Chun-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.863-871
    • /
    • 2013
  • Recently application of open protocols and external network linkage to the national critical infrastructure has been growing with the development of information and communication technologies. This trend could mean that the national critical infrastructure is exposed to cyber attacks and can be seriously jeopardized when it gets remotely operated or controlled by viruses, crackers, or cyber terrorists. In this paper virtual Honeynet model which can reduce installation and operation resource problems of Honeynet system is proposed. It maintains the merits of Honeynet system and adapts the virtualization technology. Also, virtual Honeynet model that can minimize operating cost is proposed with data analysis and collecting technique based on the verification of attack intention and focus-oriented analysis technique. With the proposed model, new type of attack detection system based on virtual Honeynet, that is Cybertrap, is designed and implemented with the host and data collecting technique based on the verification of attack intention and the network attack pattern visualization technique. To test proposed system we establish test-bed and evaluate the functionality and performance through series of experiments.

WORM-HUNTER: A Worm Guard System using Software-defined Networking

  • Hu, Yixun;Zheng, Kangfeng;Wang, Xu;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.484-510
    • /
    • 2017
  • Network security is rapidly developing, but so are attack methods. Network worms are one of the most widely used attack methods and have are able to propagate quickly. As an active defense approach to network worms, the honeynet technique has long been limited by the closed architecture of traditional network devices. In this paper, we propose a closed loop defense system of worms based on a Software-Defined Networking (SDN) technology, called Worm-Hunter. The flexibility of SDN in network building is introduced to structure the network infrastructures of Worm-Hunter. By using well-designed flow tables, Worm-Hunter is able to easily deploy different honeynet systems with different network structures and dynamically. When anomalous traffic is detected by the analyzer in Worm-Hunter, it can be redirected into the honeynet and then safely analyzed. Throughout the process, attackers will not be aware that they are caught, and all of the attack behavior is recorded in the system for further analysis. Finally, we verify the system via experiments. The experiments show that Worm-Hunter is able to build multiple honeynet systems on one physical platform. Meanwhile, all of the honeynet systems with the same topology operate without interference.

Prototype Design of Hornet Cloud using Virtual Honeypot Technique (가상 허니팟 기술의 호넷 클라우드의 프로타입 설계)

  • Cha, Byung-Rae;Park, Sun;Kim, Jong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.891-900
    • /
    • 2015
  • Cloud Computing has recently begun to emerge as a new attack target. The malice DDoS attacks are ongoing to delay and disturb the various services of the Cloud Computing. In this paper, we propose the Hornet-Cloud using security Honeypot technique and resources of Cloud Computing, and design the concept of active-interaction and security functions of Hornet-Cloud simply.