• 제목/요약/키워드: Virtual Good Purchase

검색결과 6건 처리시간 0.026초

동적 소셜네트워크 구조 변수를 적용한 가상 재화 구매 모형 연구 (Study of Virtual Goods Purchase Model Applying Dynamic Social Network Structure Variables)

  • 이희태;배정호
    • 유통과학연구
    • /
    • 제17권3호
    • /
    • pp.85-95
    • /
    • 2019
  • Purpose - The existing marketing studies using Social Network Analysis have assumed that network structure variables are time-invariant. However, a node's network position can fluctuate considerably over time and the node's network structure can be changed dynamically. Hence, if such a dynamic structural network characteristics are not specified for virtual goods purchase model, estimated parameters can be biased. In this paper, by comparing a time-invariant network structure specification model(base model) and time-varying network specification model(proposed model), the authors intend to prove whether the proposed model is superior to the base model. In addition, the authors also intend to investigate whether coefficients of network structure variables are random over time. Research design, data, and methodology - The data of this study are obtained from a Korean social network provider. The authors construct a monthly panel data by calculating the raw data. To fit the panel data, the authors derive random effects panel tobit model and multi-level mixed effects model. Results - First, the proposed model is better than that of the base model in terms of performance. Second, except for constraint, multi-level mixed effects models with random coefficient of every network structure variable(in-degree, out-degree, in-closeness centrality, out-closeness centrality, clustering coefficient) perform better than not random coefficient specification model. Conclusion - The size and importance of virtual goods market has been dramatically increasing. Notwithstanding such a strategic importance of virtual goods, there is little research on social influential factors which impact the intention of virtual good purchase. Even studies which investigated social influence factors have assumed that social network structure variables are time-invariant. However, the authors show that network structure variables are time-variant and coefficients of network structure variables are random over time. Thus, virtual goods purchase model with dynamic network structure variables performs better than that with static network structure model. Hence, if marketing practitioners intend to use social influences to sell virtual goods in social media, they had better consider time-varying social influences of network members. In addition, this study can be also differentiated from other related researches using survey data in that this study deals with actual field data.

가상 인플루언서 특성이 소비자 구매의도에 미치는 영향 : 중국 인터넷 소비자를 대상으로 한 실증연구 (Effect of Virtual Influencer Attributes on Consumer Purchase Intentions : Evidence from Chinese Internet Consumers)

  • 우언기;송효정;김태하
    • 벤처혁신연구
    • /
    • 제7권2호
    • /
    • pp.57-76
    • /
    • 2024
  • 가상 인플루언서는 주로 SNS에서 활동하는 디지털 창작물이며 다양한 영역에서 활동하고 있다. 본 연구는 가상 인플루언서의 매력성과 평판이 소비자의 구매의도에 어떤 영향을 미치는지 조사하였다. 선행연구를 바탕으로 연구모형과 설문 문항을 구성하고 총 371부의 자료를 구조방정식 모형으로 분석하였다. 연구 결과 평판은 애착, 모방 욕구, 상호작용에 긍정적 영향을 미쳤고 매력성은 애착과 모방 욕구에는 영향을 주었지만, 상호작용에는 유의한 영향을 미치지 않는 것으로 나타났다. 마지막으로 구매의도는 모방욕구, 애착, 상호작용 등 모든 변수로부터 긍정적 영향을 받았다. 이는 매력성, 평판, 상호작용성은 가상 인플루언서 마케팅 전략에서 고려해야 하는 요소이며 인기뿐만 아니라 좋은 평판을 위해서는 가상 인플루언서가 제공하는 콘텐츠 질과 신뢰성도 중요하다는 것을 의미한다. 더불어 소비자와의 긴밀한 관계를 위한 지속적인 상호작용도 필요하다. 본 연구는 기업이 가상 인플루언서를 디자인하고 활용하는데 필요한 실무적인 고려사항들과 소비자들의 행동을 이해하는데 시사점을 제공하고 있다.

움직임 보조를 위한 무릎 보호대 디자인 제안: 선호도 및 가상 착용 이미지를 이용한 만족도 평가를 중심으로 (Suggestions of Movement-Assistive Knee Pad Designs: Focusing on Preference and Satisfaction Evaluations Using Virtual Avatars' Wearing)

  • 박수진;구수민
    • 한국의류산업학회지
    • /
    • 제22권3호
    • /
    • pp.271-286
    • /
    • 2020
  • This study evaluated designs via the consumers' function and design preferences survey for using product design images, virtual avatar wearing images and product explanations that identified consumers' function and design preferences for knee protection pads as well as to develop movement assistive knee pad designs. We developed Design A for men and Design B for women. For Design A, the front of the knee supports muscles and alleviates pain with a hole. Mesh material with good ventilation was applied to enhance wearing comfort. The color was achromatic for a modern style, and the hook fastener and loops enabled easy wear and removal of the pad while controlling size and pressure strength. For Design B, taping details seamlessly support muscles in the knee area with fabrics less than 0.1 cm thick and with long sleeves in the diverse sizes. The design's satisfaction assessment showed that potential consumers were satisfied with Design A and Design B for overall design and functional features. Over 77% wanted to use/wear and purchase designs; in addition, over 78% expected it would help with walking and relieve knee pain. The results can be helpful for designers when deciding designs for manufacturing and commercializing kneepad products.

외국인 모델의 매력도와 외국어 사용의 상호작용 효과 (The Interaction Effect of Foreign Model Attractiveness and Foreign Language Usage)

  • 이지현;이동일
    • 마케팅과학연구
    • /
    • 제17권3호
    • /
    • pp.61-81
    • /
    • 2007
  • 현재 한국시장의 광고에는 외국인 모델과 외국어를 사용하는 것이 일반적이다. 그러나 그 효과에 대한 검증은 거의 이루어지지 않고 있다. 기존의 연구에 의하면 마케팅 커뮤니케이션과 소비자의 문화적 가치가 일치하게 될 때 커뮤니케이션의 효과가 높아진다고 한다. 즉, 광고에의 외국문화 사용은 기존 연구에서 주장하고 있는 바와는 반대의 현상인 것이다. 그러나 인터넷 등 글로벌 매체에 의해 글로벌 문화가 출현함에 따라 마케팅 커뮤니케이션과 소비자의 문화적 가치가 일치하는 것이 가장 바람직한 커뮤니케이션 방법이라 볼 수는 없다. 이에 본 연구는 외국인 모델을 사용하는 광고에 있어서 모델의 매력도와 외국어 사용이 소비자의 광고와 제품에 대한 태도, 구매의도 등에 어떤 영향을 미치는가를 살펴보고 효과적인 광고 커뮤니케이션에 대한 제언을 하고자 했다. 연구결과, 광고에 사용된 언어와 광고의 시각적 단서인 모델 매력도는 광고의 효과에 상호작용 효과를 나타내는 것이 밝혀졌다. 광고에 사용된 모델 매력도가 높은 경우, 제품에 대한 태도, 구매의도가 사용된 언어에 대해 유의한 차이를 보이지 않았다. 광고에 사용된 모델의 매력도가 낮은 경우에는 영어를 사용한 경우가 제품에 대한 태도, 구매의도가 높았다. 즉, 외국인 모델을 광고에 사용할 경우, 그 모델의 매력도의 높고 낮음에 따라 광고에 사용되는 언어를 선택함으로써 광고의 효과를 조절할 수 있다는 실무적 시사점을 제공한다.

  • PDF

카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법 (A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining)

  • 이동원
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.27-42
    • /
    • 2020
  • 인터넷이라는 가상 공간을 활용함으로써 물리적 공간의 제약을 갖는 오프라인 쇼핑의 한계를 넘어선 온라인 쇼핑은 다양한 기호를 가진 소비자를 만족시킬 수 있는 수많은 상품을 진열할 수 있게 되었다. 그러나, 이는 역설적으로 소비자가 구매의사결정 과정에서 너무 많은 대안을 비교 평가해야 하는 어려움을 겪게 함으로써 오히려 상품 선택을 방해하는 원인이 되기도 한다. 이런 부작용을 해소하기 위한 노력으로서, 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 구매의사결정 과정 중 정보탐색 및 대안평가에 소요되는 시간과 노력을 줄여주고 이탈을 방지하며 판매자의 매출 증대에 기여할 수 있다. 연관 상품 추천에 사용되는 연관 규칙 마이닝 기법은 통계적 방법을 통해 주문과 같은 거래 데이터로부터 서로 연관성 높은 상품을 효과적으로 발견할 수 있다. 하지만, 이 기법은 거래 건수를 기반으로 하므로, 잠재적으로 판매 가능성이 높을지라도 충분한 거래 건수가 확보되지 못한 상품은 추천 목록에서 누락될 수 있다. 이렇게 추천 시 제외된 상품은 소비자에게 구매될 수 있는 충분한 기회를 확보하지 못할 수 있으며, 또 다시 다른 상품에 비해 상대적으로 낮은 추천 기회를 얻는 악순환을 겪을 수도 있다. 본 연구는 구매의사결정이 결국 상품이 지닌 속성에 대한 사용자의 평가를 기반으로 한다는 점에 착안하여, 추천 시 상품의 속성을 반영하면 소비자가 특정 상품을 선택할 확률을 좀더 정확하게 예측할 수 있다는 점을 추천 시스템에 반영하기 위한 목적으로 수행되었다. 즉, 어떤 상품 페이지를 방문한 소비자는 그 상품이 지닌 속성들에 어느 정도 관심을 보인 것이며 추천 시스템은 이런 속성들을 기반으로 연관성을 지닌 상품을 더 정교하게 찾을 수 있다는 것이다. 상품의 주요 속성의 하나로서, 카테고리는 두 상품 간에 아직 드러나지 않은 잠재적인 연관성을 찾기에 적합한 대상이 될 수 있다고 판단하였다. 본 연구는 연관 상품 추천에 상품 간의 연관성뿐만 아니라 카테고리 간의 연관성을 추가로 반영함으로써 추천의 정확도를 높일 수 있는 예측모형을 개발하였고, 온라인 쇼핑몰로부터 수집된 주문 데이터를 활용하여 이루어진 실험은 기존 모형에 비해 추천 성능이 개선됨을 보였다. 실무적인 관점에서 볼 때, 본 연구는 소비자의 구매 만족도를 향상시키고 판매자의 매출을 증가시키는 데에 기여할 수 있을 것으로 기대된다.

A New Item Recommendation Procedure Using Preference Boundary

  • Kim, Hyea-Kyeong;Jang, Moon-Kyoung;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • Asia pacific journal of information systems
    • /
    • 제20권1호
    • /
    • pp.81-99
    • /
    • 2010
  • Lately, in consumers' markets the number of new items is rapidly increasing at an overwhelming rate while consumers have limited access to information about those new products in making a sensible, well-informed purchase. Therefore, item providers and customers need a system which recommends right items to right customers. Also, whenever new items are released, for instance, the recommender system specializing in new items can help item providers locate and identify potential customers. Currently, new items are being added to an existing system without being specially noted to consumers, making it difficult for consumers to identify and evaluate new products introduced in the markets. Most of previous approaches for recommender systems have to rely on the usage history of customers. For new items, this content-based (CB) approach is simply not available for the system to recommend those new items to potential consumers. Although collaborative filtering (CF) approach is not directly applicable to solve the new item problem, it would be a good idea to use the basic principle of CF which identifies similar customers, i,e. neighbors, and recommend items to those customers who have liked the similar items in the past. This research aims to suggest a hybrid recommendation procedure based on the preference boundary of target customer. We suggest the hybrid recommendation procedure using the preference boundary in the feature space for recommending new items only. The basic principle is that if a new item belongs within the preference boundary of a target customer, then it is evaluated to be preferred by the customer. Customers' preferences and characteristics of items including new items are represented in a feature space, and the scope or boundary of the target customer's preference is extended to those of neighbors'. The new item recommendation procedure consists of three steps. The first step is analyzing the profile of items, which are represented as k-dimensional feature values. The second step is to determine the representative point of the target customer's preference boundary, the centroid, based on a personal information set. To determine the centroid of preference boundary of a target customer, three algorithms are developed in this research: one is using the centroid of a target customer only (TC), the other is using centroid of a (dummy) big target customer that is composed of a target customer and his/her neighbors (BC), and another is using centroids of a target customer and his/her neighbors (NC). The third step is to determine the range of the preference boundary, the radius. The suggested algorithm Is using the average distance (AD) between the centroid and all purchased items. We test whether the CF-based approach to determine the centroid of the preference boundary improves the recommendation quality or not. For this purpose, we develop two hybrid algorithms, BC and NC, which use neighbors when deciding centroid of the preference boundary. To test the validity of hybrid algorithms, BC and NC, we developed CB-algorithm, TC, which uses target customers only. We measured effectiveness scores of suggested algorithms and compared them through a series of experiments with a set of real mobile image transaction data. We spilt the period between 1st June 2004 and 31st July and the period between 1st August and 31st August 2004 as a training set and a test set, respectively. The training set Is used to make the preference boundary, and the test set is used to evaluate the performance of the suggested hybrid recommendation procedure. The main aim of this research Is to compare the hybrid recommendation algorithm with the CB algorithm. To evaluate the performance of each algorithm, we compare the purchased new item list in test period with the recommended item list which is recommended by suggested algorithms. So we employ the evaluation metric to hit the ratio for evaluating our algorithms. The hit ratio is defined as the ratio of the hit set size to the recommended set size. The hit set size means the number of success of recommendations in our experiment, and the test set size means the number of purchased items during the test period. Experimental test result shows the hit ratio of BC and NC is bigger than that of TC. This means using neighbors Is more effective to recommend new items. That is hybrid algorithm using CF is more effective when recommending to consumers new items than the algorithm using only CB. The reason of the smaller hit ratio of BC than that of NC is that BC is defined as a dummy or virtual customer who purchased all items of target customers' and neighbors'. That is centroid of BC often shifts from that of TC, so it tends to reflect skewed characters of target customer. So the recommendation algorithm using NC shows the best hit ratio, because NC has sufficient information about target customers and their neighbors without damaging the information about the target customers.