• Title/Summary/Keyword: Virtual Augmentation

Search Result 37, Processing Time 0.025 seconds

Data Augmentation Techniques of Power Facilities for Improve Deep Learning Performance

  • Jang, Seungmin;Son, Seungwoo;Kim, Bongsuck
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.323-328
    • /
    • 2021
  • Diagnostic models are required. Data augmentation is one of the best ways to improve deep learning performance. Traditional augmentation techniques that modify image brightness or spatial information are difficult to achieve great results. To overcome this, a generative adversarial network (GAN) technology that generates virtual data to increase deep learning performance has emerged. GAN can create realistic-looking fake images by competitive learning two networks, a generator that creates fakes and a discriminator that determines whether images are real or fake made by the generator. GAN is being used in computer vision, IT solutions, and medical imaging fields. It is essential to secure additional learning data to advance deep learning-based fault diagnosis solutions in the power industry where facilities are strictly maintained more than other industries. In this paper, we propose a method for generating power facility images using GAN and a strategy for improving performance when only used a small amount of data. Finally, we analyze the performance of the augmented image to see if it could be utilized for the deep learning-based diagnosis system or not.

Ubiquitous Car Maintenance Services Using Augmented Reality and Context Awareness (증강현실을 활용한 상황인지기반의 편재형 자동차 정비 서비스)

  • Rhee, Gue-Won;Seo, Dong-Woo;Lee, Jae-Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.171-181
    • /
    • 2007
  • Ubiquitous computing is a vision of our future computing lifestyle in which computer systems seamlessly integrate into our everyday lives, providing services and information in anywhere and anytime fashion. Augmented reality (AR) can naturally complement ubiquitous computing by providing an intuitive and collaborative visualization and simulation interface to a three-dimensional information space embedded within physical reality. This paper presents a service framework and its applications for providing context-aware u-car maintenance services using augmented reality, which can support a rich set of ubiquitous services and collaboration. It realizes bi-augmentation between physical and virtual spaces using augmented reality. It also offers a context processing module to acquire, interpret and disseminate context information. In particular, the context processing module considers user's preferences and security profile for providing private and customer-oriented services. The prototype system has been implemented to support 3D animation, TTS (Text-to-Speech), augmented manual, annotation, and pre- and post-augmentation services in ubiquitous car service environments.

A Real-time Augmented Video System using Chroma-Pattern Tracking (색상패턴 추적을 이용한 실시간 증강영상 시스템)

  • 박성춘;남승진;오주현;박창섭
    • Journal of Broadcast Engineering
    • /
    • v.7 no.1
    • /
    • pp.2-9
    • /
    • 2002
  • Recently. VR( Virtual Reality) applications such as virtual studio and virtual character are wifely used In TV programs. and AR( Augmented Reality) applications are also belong taken an interest increasingly. This paper introduces a virtual screen system. which Is a new AR application for broadcasting. The virtual screen system is a real-time video augmentation system by tracking a chroma-patterned moving panel. We haute recently developed a virtual screen system.'K-vision'. Our system enables the user to hold and morse a simple panel on which live video, pictures of 3D graphics images can appear. All the Images seen on the panel change In the correct perspective, according to movements of the camera and the user holding the panel, in real-time. For the purpose of tracking janet. we use some computer vision techniques such as blob analysis and feature tracking. K-vision can work well with any type of camera. requiring no special add-ons. And no need for sensor attachments to the panel. no calibration procedures required. We are using K-vision in some TV programs such as election. documentary and entertainment.

A Cooperative Object-Transportation Control of Multiple AGV Systems using Decentralized Passive Velocity Field Control Algorithm (분산 수동속도장 제어법을 이용한 다중 AGV 시스템의 협조 이송제어)

  • Suh, Jin-Ho;Kim, Young-Bok;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.391-393
    • /
    • 2005
  • Automatic guided vehicle(AGV) in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control scheme based on virtual-passivity. It is shown that the cooperative AGV systems ensure stability and the convergence to scaled multiple of each desired velocity field for multiple AGV systems. Finally, the application of proposed virtual passivity-based decentralized control algorithm via system augmentation is applied to be the tracking a circle. Also. the simulation results for the object-transportation by two AGV systems illustrate the validity of the proposed control scheme.

  • PDF

A Cooperative Object-Transportation Control of Multiple AGV Systems using Decentralized Passive Velocity Field Control Algorithm (분산 수동속도장 제어법을 이용한 다중 AGV 시스템의 협조 이송제어)

  • Suh, Jin-Ho;Kim, Young-Bok;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.261-263
    • /
    • 2006
  • Automatic guided vehicle(AGV) in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control scheme based on virtual-passivity. It is shown that the cooperative AGV systems ensure stability and the convergence to scaled multiple of each desired velocity field for multiple AGV systems. Finally, the application of p reposed virtual passivity-based decentralized control algorithm via system augmentation is applied to be the tracking a circle. Also, the simulation results for the object-transportation by two AGV systems illustrate the validity of the proposed control scheme.

Video Augmentation of Virtual Object by Uncalibrated 3D Reconstruction from Video Frames (비디오 영상에서의 비보정 3차원 좌표 복원을 통한 가상 객체의 비디오 합성)

  • Park Jong-Seung;Sung Mee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.4
    • /
    • pp.421-433
    • /
    • 2006
  • This paper proposes a method to insert virtual objects into a real video stream based on feature tracking and camera pose estimation from a set of single-camera video frames. To insert or modify 3D shapes to target video frames, the transformation from the 3D objects to the projection of the objects onto the video frames should be revealed. It is shown that, without a camera calibration process, the 3D reconstruction is possible using multiple images from a single camera under the fixed internal camera parameters. The proposed approach is based on the simplification of the camera matrix of intrinsic parameters and the use of projective geometry. The method is particularly useful for augmented reality applications to insert or modify models to a real video stream. The proposed method is based on a linear parameter estimation approach for the auto-calibration step and it enhances the stability and reduces the execution time. Several experimental results are presented on real-world video streams, demonstrating the usefulness of our method for the augmented reality applications.

  • PDF

Deep Learning based Vehicle AR Manual for Improving User Experience (사용자 경험 향상을 위한 딥러닝 기반 차량용 AR 매뉴얼)

  • Lee, Jeong-Min;Kim, Jun-Hak;Seok, Jung-Won;Park, Jinho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.125-134
    • /
    • 2022
  • This paper implements an AR manual for a vehicle that can be used even in the vehicle interior space where it is difficult to apply the augmentation method of AR content, which is mainly used, and applies a deep learning model to improve the augmentation matching between real space and virtual objects. Through deep learning, the logo of the steering wheel is recognized regardless of the position, angle, and inclination, and 3D interior space coordinates are generated based on this, and the virtual button is precisely augmented on the actual vehicle parts. Based on the same learning model, the function to recognize the main warning light symbols of the vehicle is also implemented to increase the functionality and usability as an AR manual for vehicles.

Human Detection using Real-virtual Augmented Dataset

  • Jongmin, Lee;Yongwan, Kim;Jinsung, Choi;Ki-Hong, Kim;Daehwan, Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.98-102
    • /
    • 2023
  • This paper presents a study on how augmenting semi-synthetic image data improves the performance of human detection algorithms. In the field of object detection, securing a high-quality data set plays the most important role in training deep learning algorithms. Recently, the acquisition of real image data has become time consuming and expensive; therefore, research using synthesized data has been conducted. Synthetic data haves the advantage of being able to generate a vast amount of data and accurately label it. However, the utility of synthetic data in human detection has not yet been demonstrated. Therefore, we use You Only Look Once (YOLO), the object detection algorithm most commonly used, to experimentally analyze the effect of synthetic data augmentation on human detection performance. As a result of training YOLO using the Penn-Fudan dataset, it was shown that the YOLO network model trained on a dataset augmented with synthetic data provided high-performance results in terms of the Precision-Recall Curve and F1-Confidence Curve.

A Real-time Augmented Reality System using Hand Geometric Characteristics based on Computer Vision (손의 기하학적인 특성을 적용한 실시간 비전 기반 증강현실 시스템)

  • Choi, Hee-Sun;Jung, Da-Un;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.323-335
    • /
    • 2012
  • In this paper, we propose an AR(augmented reality) system using user's bare hand based on computer vision. It is important for registering a virtual object on the real input image to detect and track correct feature points. The AR systems with markers are stable but they can not register the virtual object on an acquired image when the marker goes out of a range of the camera. There is a tendency to give users inconvenient environment which is limited to control a virtual object. On the other hand, our system detects fingertips as fiducial features using adaptive ellipse fitting method considering the geometric characteristics of hand. It registers the virtual object stably by getting movement of fingertips with determining the shortest distance from a palm center. We verified that the accuracy of fingertip detection over 82.0% and fingertip ordering and tracking have just 1.8% and 2.0% errors for each step. We proved that this system can replace the marker system by tacking a camera projection matrix effectively in the view of stable augmentation of virtual object.

Development of Pre-construction Verification System using AR-based Drawings Object (도면증강 객체기반의 건설공사 사전 시공검증시스템 개발 연구)

  • Kim, Hyeonsung;Kang, Leenseok
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.93-101
    • /
    • 2020
  • Recently, as a BIM-based construction simulation system, 4D CAD tools using virtual reality (VR) objects are being applied in construction project. In such a system, since the expression of the object is based on VR image, it has a sense of separation from the real environment, thus limiting the use of field engineers. For this reason, there are increasing cases of applying augmented reality (AR) technology to reduce the sense of separation from the field and express realistic VR objects. This study attempts to develop a methodology and BIM module for the pre-construction verification system using AR technology to increase the practical utility of VR-based BIM objects. To this end, authors develop an AR-based drawing verification function and drawing object-based 4D model augmentation function that can increase the practical utility of 2D drawings, and verify the applicability of the system by performing case analysis. Since VR object-based image has a problem of low realism to field engineers, the linking technology between AR object and 4D model is expected to contribute to the expansion of the use of 4D CADsystem in the construction project.