• 제목/요약/키워드: Viral vector

검색결과 183건 처리시간 0.026초

CCR7 Ligand의 Memory CD4+ T 세포 증가유도 및 바이러스 감염에 대한 방어효과 (CCR7 Ligands Induced Expansion of Memory CD4+ T Cells and Protection from Viral Infection)

  • 어성국;조정곤
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 2003
  • Background: CC chemokine receptor (CCR) 7 and cognate CCR7 ligands, CCL21 (formerly secondary lymphoid tissue chemokine [SLC]) and CCL19 (formerly Epstein-Barr virus-induced molecule 1 ligand chemokine [ELC]), were known to establish microenvironment for the initiation of immune responses in secondary lymphoid tissue. As described previously, coadministration of DNA vaccine with CCR7 ligand-encoding plasmid DNA elicited enhanced humoral and cellular immunity via increasing the number of dendritic cells (DC) in secondary lymphoid tissue. The author hypothesized here that CCR7 ligand DNA could effectively expand memory CD4+ T cells to protect from viral infection likely via increasing DC number. Methods: To evaluate the effect of CCR7 ligand DNA on the expansion of memory CD4+ T cells, DO11.10.BALB/c transgenic (Tg)-mice, which have highly frequent ovalbumin $(OVA)_{323-339}$ peptide-specific CD4+ T cells, were used. Tg-mice were previously injected with CCR7 ligand DNA, then immunized with $OVA_{323-339}$ peptide plus complete Freund's adjuvant. Subsequently, memory CD4+ T cells in peripheral blood lymphocytes (PBL) were analyzed by FACS analysis for memory phenotype ($CD44^{high}$ and CD62 $L^{low}$) at memory stage. Memory CD4+ T cells recruited into inflammatory site induced with OVA-expressing virus were also analyzed. Finally, the protective efficacy against viral infection was evaluated. Results: CCR7 ligand DNA-treated Tg-mice showed more expanded $CD44^{high}$ memory CD4+ T cells in PBL than control vector-treated animals. The increased number of memory CD4+ T cells recruited into inflammatory site was also observed in CCR7 ligand DNA-treated Tg-mice. Such effectively expanded memory CD4+ T cell population increased the protective immunity against virulent viral infection. Conclusion: These results document that CCR7 and its cognate ligands play an important role in intracellular infection through establishing optimal memory T cell. Moreover, CCR7 ligand could be useful as modulator in DNA vaccination against viral infection as well as cancer.

Manipulation of Hepatitis B Viral DNA for Generating Transgenic Mice

  • Kim, Seung-Hee;Park, Sang-Ho;Kim, Tae-Gyun;Lee, Song-Deuk;Aree Moon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.178-178
    • /
    • 1996
  • Hepatitis B virus (HBV) infection is one of the serious problems in Southeast Asia including Korea because it causes chronic hepatitis, which can easily be transformed In fatal conditions such as cirrhosis and hepatoma. Even though lots of informations on structural characteristics and gene expression mechanisms have been accumulated, the mechanism for HBV-induced hepatocellular injury which is believed to be the consequences of the immunological response is not well understood. In order tn perform immunopathological studies for prevention and treatment of HBV infection, we designed transgenic mice as a disease model which can mimic HBV infection, In this study, a promoter-HBV DNA fragment for the preparation of HBV transgenic mice has been constructed. To add a proper enzyme site on 5' end of HBV gene, total HBV (subtype adr) gene was inserted into BamHI site of pBluescript SK vector and reextracted by PstI-SacI treatment A liver-specific promoter, rat ${\alpha}$ 2u globulin gene promoter, was insrted to pBluescript SK vector and reextracted by BamHI-PstI treatment, Promoter-HBV DNA was constructed by ligation of two fragments using identical PstI sites. For large scale production of promoter-HBV DNA, it was inserted to BamHI-SacI site of pBluescript SK vector.

  • PDF

Lewis 폐암 마우스 모델에서 Retroviral Vector나 Adenoviral Vector로 이입된 Herpes Simplex Virus Thymidine Kinase 유전자치료 (Herpes Simplex Virus Thymidine Kinase Gene Therapy Delivered by Retroviral or Adenoviral Vector in Mouse Model of Lewis Lung Carcinoma)

  • 권희충;정재민;김정현;함용호;서지숙;이기호;김창민;이한수;이춘택
    • Tuberculosis and Respiratory Diseases
    • /
    • 제49권3호
    • /
    • pp.298-309
    • /
    • 2000
  • 연구배경 : 암 유전자치료에서 각광받고 있는 HSV-tk/GCV 전략의 항암효과에는 다음과 같은 장점들이 거론되고 있다 : 1) GCV 처리에 의한 암세포 직접살상효과 2) HSV-tk 이입된 세포에 의해서 HSV-tk 이입되지 않은 주변세포를 살상하는 bystander effect 3) 생체 내 bystander eff ect로 알려 진 anti-tumor immunity. Retrovirus와 adenovirus sequence를 이용할 경우 몇몇 세포주와 마우스에서 이들이 목적유전자의 발현을 억제할 수 있다는 것이 보고되고 있다. 본 연구에서는 retroviral나 adenoviral vector로 HSV-tk 유전자를 이입한 Lewis 폐암세포주와 폐암 마우스 모델을 통하여 HSV-tk/GCV 전략의 장점을 조사하였고 이 viral vector들 사이의 차이를 비교 조사하였다. 또한 Lewis 폐암세포주에서 butyrate를 처리한 후 HSV-tk 유전자의 발현증가를 관찰하였다. 방법 : Lewis retroviral vector와 adenoviral vector로 HSV-tk 유전자를 이입한 후 butyrate로 HSV-tk 유전자의 발현을 유도하고 Western blotting수행하여 분석하였다. 생체 외에서 HSV-tk/GCV에 의한 세포살상효과를 MTT 검사로 수행하였고 생체 내에서 LLC 나 HSV-tk 이입된 LLC 세포주를 이식하여 종양소멸 및 bystander effect를 조사 하였다. 결과 : 1. Butyrate로 HSV-tk adenovirus로 이입된 LLC에서 증가한 반면 retrovirus로 이입된 LLC에서는 증가하지 않았다. 2. 생체 외 그리고 생체 내에서 viral vector로 HSV-tk를 이입한 종양세포에 GCV 투여하는 것은 종양 세포의 살상에 효과적이었으며 LLC와 LLC-tk 세포주를 혼합한 실험에서 bystander effect도 종양세포의 성장을 억제하는 것으로 관찰되었다. 결론 : 향후 생체 외 그리고 생체 내 실험에서 adenoviral vector를 이용한 유전자 전달에 butyrate를 함께 사용하면 유전자발현을 증진시킬 것으로 사료되며 자살 유전자인 HSV-tk을 종양에 이입하여 GCV을 처리 하는 치료가 폐암유전자치료에 효과가 있을 것으로 생각된다.

  • PDF

Distinct Humoral and Cellular Immunity Induced by Alternating Prime-boost Vaccination Using Plasmid DNA and Live Viral Vector Vaccines Expressing the E Protein of Dengue Virus Type 2

  • George, Junu A.;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • 제11권5호
    • /
    • pp.268-280
    • /
    • 2011
  • Background: Dengue virus, which belongs to the Flavivirus genus of the Flaviviridae family, causes fatal dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) with infection risk of 2.5 billion people worldwide. However, approved vaccines are still not available. Here, we explored the immune responses induced by alternating prime-boost vaccination using DNA vaccine, adenovirus, and vaccinia virus expressing E protein of dengue virus type 2 (DenV2). Methods: Following immunization with DNA vaccine (pDE), adenovirus (rAd-E), and/or vaccinia virus (VV-E) expressing E protein, E protein-specific IgG and its isotypes were determined by conventional ELISA. Intracellular CD154 and cytokine staining was used for enumerating CD4+ T cells specific for E protein. E protein-specific CD8+ T cell responses were evaluated by in vivo CTL killing activity and intracellular IFN-${\gamma}$ staining. Results: Among three constructs, VV-E induced the most potent IgG responses, Th1-type cytokine production by stimulated CD4+ T cells, and the CD8+ T cell response. Furthermore, when the three constructs were used for alternating prime-boost vaccination, the results revealed a different pattern of CD4+ and CD8+ T cell responses. i) Priming with VV-E induced higher E-specific IgG level but it was decreased rapidly. ii) Strong CD8+ T cell responses specific for E protein were induced when VV-E was used for the priming step, and such CD8+ T cell responses were significantly boosted with pDE. iii) Priming with rAd-E induced stronger CD4+ T cell responses which subsequently boosted with pDE to a greater extent than VV-E and rAd-E. Conclusion: These results indicate that priming with live viral vector vaccines could induce different patterns of E protein-specific CD4+ and CD8+ T cell responses which were significantly enhanced by booster vaccination with the DNA vaccine. Therefore, our observation will provide valuable information for the establishment of optimal prime-boost vaccination against DenV.

효모에서 B형 간염바이러스의 내면항원의 발현과 분비에 미치는 전위내면항원의 역할 (Role of pre-C Region in the Expression and Secretion of Hepatitis B Viral Core Antigen in Yeast)

  • 신상훈;김성기;노현모
    • 미생물학회지
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 1990
  • B형 간염바이러스($\alpha$dr 형)의 내면항원(HBcAg) 유전자는 두개의 단백질 합성시작 유전자 암호 ATG를 갖는다. 하나는 전위내 면항원을 다른 하나는 내면항원 유전자들 위한 ATG 부호이다. 내연항원의 발현과 전위내면항원의 역할을 연구한기 위하여 전위내면 항왼 유전자를 포함하는 것과 포함하지 않는 내연항원 유전자를 효모발현 운반체에 클j료녕 하였다. 또한 내면항원의 발현에 5 upstream 의 역할을 알아보기 위하여 여러 가지의 5’ 제거툴연변이체를 클로닝하였다. 앞에서 만들어진 플라스미드로 여러 효모 균주을 형질전환시킨 후 발헨된 내면항원과 그와 관련된 항원 HBeAg을 방사면역측정법 으로 확인하였다. 효모에서 내면항원 발현의 최적조건 허에서 가장 높은 수준의 항원은 PGK promoter 와 terminator에 내연향원 올 포함한 pGKHBc를 가진 SHY4에서 검출되었다. 전위내면부위의 존재와 우관하게 내면항원은 배양액에서는 검출되지 않고 세포내에서만 검출되었다. 이 결과는 전위내면항원이 효모 내에서 내연항왼의 분비에 영향올 주지않음을 의미한다.

  • PDF

Analysis of Promoter Strength of Autographa californica Nuclear Polyhedrosis Virus IE1 Gene by Using Rreconmbinant Baculovirus

  • Cho, Eun-Sook;Park, Hae-Jin;Jin, Byung-Rae;Sohn, Hung-Dae;Kang, Seok-Woo;Yun, Eun-Young;Kim, Keun-Young;Je, Yeon-Ho;Kang, Seok-Kwon
    • 한국잠사곤충학회지
    • /
    • 제41권2호
    • /
    • pp.102-107
    • /
    • 1999
  • To analysis a promoter strength of Atographa californica nucler polyhedrosis virus (AcNPV) IE1 gene, an immediate viral gene, ${\beta}$-glactosidase gene as a reporter gene was introduced under the control of the IE1 promoter. The restriction fragment containing IE1 promoter and ${\beta}$-galctosidase gene from pAcIE1-gal were inserter into pBacPAK9 to yield transfer vector pAcNPV-IE1-gal. The pAcNPV-IE1-gal was cotransfected with AcNPV genomic DNA BacPAK6 into Sf9 cells to produce recombinant baculovirus AcNPV-IE1-gal. In addition, recombinant bacvulovirus AcNPV-gal, which express ${\beta}$-galac-tosidase under the control of the polyhedrin promoter, was constrer, was constructed to compared with AcNPV-IE1-gal. The recombinant viruses were respectively infected into Sf9 cells and characterized by the virus titer and expression of ${\beta}$-galactoxidase in Sf9 cells. The promoter strength of IE1 and polyhedrin promoters was determined by the amount of ${\beta}$-galactosidase secreted into medium by viral infection. The titer of AcNPV-IE1-Gal determined by plaque assays in Sf9 cells was similar to that of AcNPV-gal. However, expression level of ${\beta}$-galactosidase by AcNPV-IE1-gal was significantly lower than that by AcNPV-gal. In conclusion, promoter strength of IE1 was approximately 25-fold lower than that of polyhedrin.

  • PDF

Particle Replication In Non-Wetting Templates (PRINT) 방법을 이용한 약물 및 유전자 전달체의 제작 (Fabrication of Non Viral Vector for Drug and Gene Delivery using Particle Replication In Non-Wetting Templates (PRINT) Technique)

  • 박지영;;;임종성
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.493-499
    • /
    • 2007
  • 본 연구에서는 UV photo-lithography 방식의 particle replication in non-wetting templates(PRINT) 법을 이용하여 약물 전달에 운반체로 사용되는 $3{\mu}m{\times}3{\mu}m{\times}2{\mu}m$ 사이즈의 균일한 고분자 하이드로젤 입자를 제조하였다. 몰드(mold)와 기재(substrate)는 PRINT 방식을 통하여 탄성을 지닌 perfluoropolyethers(PFPE)로 제작하였으며 이를 반복적으로 사용할 수 있도록 하였다. 제작된 입자는 점착성이 있는 수용성 고분자를 이용하여 회수하였다. 입자의 주요 성분은 생분해성 고분자인 poly(ethylene glycol) diacrylate(PEG-diA)이며, 세포 uptake에 적합하도록 aminoethylacrylate(AEM)와 2-acryloxyethyltrimethyl ammonium chloride(AETMAC)를 첨가하였다. 본 연구를 통해 균일하고 원하는 크기의 생체분해성 고분자 입자를 제작하는 PRINT 기술이 약물 전달 및 유전자 전달에 필요한 수송체인 비바이럴 벡터를 제작하기 위한 효과적인 기술임을 제시하였다.

High Level Production of Glycoprotein H of HSV-1 (F) Using HcNPV Vector System

  • Kang, Hyun;Cha, Soung-Chul;Han, You-Jin;Park, In-Ho;Lee, Min-Jung;Byun, Si-Myung;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.483-492
    • /
    • 2000
  • The Herpes simplex virus type 1 (HSV-1) strain F glycoprotein H (gH) gene in the pHLB-4 plasmid was recombinated into a baculovirus expression vector (lacZ-HcNPV) to construct a recombinant virus GH-HcNPV expressing gH. The sequences of gH and its expression were analyzed. The gH gene was located in the 6.41 kb BglII fragment. The open reading frame (ORF) of the gH gene was 2,517 bp and codes 838 amino acid residues. Insect cells infected with this recombinant virus synthesized a high level of the matured and gX-gH fusion protein with approximately 112 kDa. The fusion gH protein was localized on the membrane of the insect cells as seen by using immunofluorescence assay and accumulated in the cultured media by the SDS-PAGE and immunoprecipitation assays. The amino acid sequence presents additional characteristics compatible with the structure of a viral glycoprotein: signal peptide, putative glycosylation sites and a long C-terminal transmembrane sequence. Antibodies raised in mice to this recombinant protein recognized viral gH and neutralized the infectivity of HSV-1 in vitro. These results demonstrate that it is possible to produce a mature protein by gene transfer in eukaryotic cells, and indicate the utility of the HcNPV-insect cell system for producing and characterizing eukaryotic proteins. Furthermore, the neutralizing antibodies would appear to protect mice against HSV; accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Suppression of Rice Stripe Virus Replication in Laodelphax striatellus Using Vector Insect-Derived Double-Stranded RNAs

  • Fang, Ying;Choi, Jae Young;Park, Dong Hwan;Park, Min Gu;Kim, Jun Young;Wang, Minghui;Kim, Hyun Ji;Kim, Woo Jin;Je, Yeon Ho
    • The Plant Pathology Journal
    • /
    • 제36권3호
    • /
    • pp.280-288
    • /
    • 2020
  • RNA interference (RNAi) has attracted attention as a promising approach to control plant viruses in their insect vectors. In the present study, to suppress replication of the rice stripe virus (RSV) in its vector, Laodelphax striatellus, using RNAi, dsRNAs against L. striatellus genes that are strongly upregulated upon RSV infection were delivered through a rice leaf-mediated method. RNAi-based silencing of peroxiredoxin, cathepsin B, and cytochrome P450 resulted in significant down regulation of the NS3 gene of RSV, achieving a transcriptional reduction greater than 73.6% at a concentration of 100 ng/μl and, possibly compromising viral replication. L. striatellus genes might play crucial roles in the transmission of RSV; transcriptional silencing of these genes could suppress viral replication in L. striatellus. These results suggest effective RNAi-based approaches for controlling RSV and provide insight into RSV-L. striatellus interactions.

Rapid Screening of Apple mosaic virus in Cultivated Apples by RT-PCR

  • Ryu, Ki-Hyun;Park, Sun-Hee
    • The Plant Pathology Journal
    • /
    • 제19권3호
    • /
    • pp.159-161
    • /
    • 2003
  • The coat protein (CP) gene of Apple mosaic virus (ApMV), a member of the genus Ilarvirus, was selected for the design of virus-specific primers for amplification and molecular detection of the virus in cultivated apple. A combined assay of reverse transcription and polymerase chain reaction (RT-PCR) was performed with a single pair of ApMV-specific primers and crude nucleic acid extracts from virus-infected apple for rapid detection of the virus. The PCR product was verified by restriction mapping analysis and by sequence determination. The lowest concentration of template viral RNA required for detection was 100 fg. This indicates that the RT-PCR for detection of the virus is a 10$^3$times more sensitive, reproducible and time-saving method than the enzyme-linked immunosorbent assay. The specificity of the primers was verified using other unrelated viral RNAs. No PCR product was observed when Cucumber mosaic virus (Cucumovirus) or a crude extract of healthy apple was used as a template in RT-PCR with the same primers. The PCR product (669 bp) of the CP gene of the virus was cloned into the plasmid vector and result-ant recombinant (pAPCP1) was selected for molecule of apple transformation to breed virus-resistant transgenic apple plants as the next step. This method can be useful for early stage screening of in vitro plantlet and genetic resources of resistant cultivar of apple plants.