• Title/Summary/Keyword: Viral Sequence

Search Result 247, Processing Time 0.031 seconds

Depth-Specific Distribution of the SAR116 Phages Revealed by Virome Binning

  • Kang, Ilnam;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.592-596
    • /
    • 2014
  • HMO-2011, a recently isolated lytic phage that infects the SAR116 bacterial clade, represents one of the most abundant phage types in the oceans. In this study, the HMO-2011 genome sequence was compared with virome sequences obtained from various depths of the Pacific Ocean regions using metagenome binning. HMO-2011 was confirmed to be one of the most highly assigned viruses, with a maximum of 7.6% of total reads assigned. The HMO-2011-type phages demonstrated a depth-specific distribution, showing more abundance in the euphotic zone of coastal, transition, and open ocean regions as compared with the dark ocean.

Multiple shRNA expressing vector enhances efficiency of gene silencing

  • Song, Jun;Giang, An;Lu, Yingchun;Pang, Shen;Chiu, Robert
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.358-362
    • /
    • 2008
  • RNA interference (RNAi) is the process of sequence-specific gene silencing. However, RNAi efficiency still needs to be improved for effective inhibition of target genes. We have developed an effective strategy to express multiple shRNAs (small hairpin RNA) simultaneously using multiple RNA Polymerase III (Pol III) promoters in a single vector. Our data demonstrate that multiple shRNAs expressed from Pol III promoters have a synergistic effect in repressing the target gene. Silencing of endogenous cyclophilin A (CypA) or key HIV viral genes by multiple shRNAs results in significant inhibition of the target gene.

Differential Expression of HCV Core Protein from Two Different Quasispecies

  • Yu, Kyung-Lee;You, Ji-Chang
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.151-155
    • /
    • 2009
  • Hepatitis C virus (HCV) has genetic diversity like most of RNA viruses. HCV major genotypes are classified into several subtypes which are further divided into quasispecies having, genetically different but closely related variants. The HCV core that is a nucleocapsid protein located at the amino terminus of the viral polyprotein is relatively a conserved protein among the HCV isolates and thus it has been one of plausible targets for anti-HCV drug development. However, different quasispecies of HCV core gene have also been found. In this study, we compared the expression level of core protein between two different quasispecies of HCV genotype 1b. Our data demonstrate that a little differences of amino acid sequence lead to substantial difference of expression level. It might be another important reason of different pathogenesis among HCV infected patients.

Isolation and Characterization of Watermelon Isolate of Cucumber green mottle mosaic virus(CGMMV-HY1) from Watermelon Plants with Severe Mottle Mosaic Symptoms

  • Shim, Chang-Ki;Han, Ki-Soo;Lee, Jung-Han;Bae, Dong-Won;Kim, Dong-Kil;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.167-171
    • /
    • 2005
  • We isolated the Cucumber green mottle mosaic virus(CGMMV) particles from watermelon leaves and designated as CGMMV-HY1 as a watermelon isolate and attempted to characterize the pathogenic isolate responsible for such an epidemic in watermelon and also to monitor dominant viral isolates in greenhouse. The watermelon plants infected with CGMMV generally showed mottle mosaic, mosaic, growth stunting, necrosis and deformed fruit. The reactions of indicator plants to CGMMV-HY1 were the local lesions on Nicotiana tabacum cv. White Burley, Nicotiana tabacum cv. Samsun, and Chenopodium amaranticola, and the mosaic symptoms only on Cucumis sativus, but the CGMMV-HY1 did not infect Nicotiana sylvesytis, Datura stramonium, Chenopodium quinoa, and Petunia hybrida. Purified virus particles were rod-shaped and about 300 nm long. The coat protein (CP) of purified CGMMV-HY1 was single band with molecular weight of about 16.5 kDa which was confirmed by western blot analysis probed with monoclonal antibody of CGMMV-HY1. The genomic and subgenomic RNAs of 6.4 kb and 0.75 kb were revealed by the electrophoresis on 1.2% formaldehydedenatured agarose gel. Viral and complementary CGMMV-specific primer sets were designed for spanning the genome using previously reported CGMMV sequences. A 464bp of CP gene of CGMMV-HY1 was amplified by RT-PCR and cloned into PGEM-T easy vector. The nucleotide sequence of CP gene of CGMMV-HY1 shared 98%, 99%, and 100% identities with that of CGMMV strains W, KOM, and KW respectively. Based on these results, we identified CGMMV-HY1 as a CGMMV isolate of watermelon, a member of Tobamovirus.

Activity of Early Gene Promoters from a Korean Chlorella Virus Isolate in Transformed Chlorella Algae

  • Jung Heoy-Kyung;Kim Gun-Do;Choi Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.952-960
    • /
    • 2006
  • As a unicellular green alga that possesses many of the metabolic pathways present in higher plants, Chlorelia offers many advantages for expression of heterologous proteins. Since strong and constitutive promoters are necessary for efficient expression in heterologous expression systems, the development of such promoters for use in the Chlorella system was the aim of this study. Proteins encoded by the early genes of algal viruses are expressed before viral replication, probably by the host transcriptional machinery, and the promoters of these genes might be useful for heterologous expression in Chlorella. In this study, putative promoter regions of DNA polymerase, ATP-dependent DNA ligase, and chitinase genes were amplified from eight Korean Chlorella virus isolates by using primer sets designed based on the sequence of the genome of PBCV-1, the prototype of the Phycodnaviridae. These putative promoter regions were found to contain several cis-acting elements for transcription factors, including the TATA, CAAT, NTBBF1, GATA, and CCAAT boxes. The amplified promoter regions were placed into Chlorella transformation vectors containing a green fluorescence protein (GFP) reporter gene and the Sh ble gene for phleomycin resistance. C. vulgaris protoplasts were transformed and then selected with phleomycin. The GFP fluorescence intensities of cells transformed with chitinase, DNA polymerase, and DNA ligase gene promoter-GFP fusion constructs were 101.5, 100.8, and 95.8%, respectively, of that of CaMV 35S-GFP-transformed Chlorella cells. These results demonstrate that these viral promoters are active in transformed Chlorella.

Rapid Detection and Identification of Cucumber Mosaic Virus by Reverse Transcription and Polymerase Chain Reaction (RT-PCR) and Restriction Analysis (역전사 중합효소련쇄반응(RT-PCR)과 제한효소 분석을 이용한 오이 모자이크 바이러스의 신속한 검정과 동정)

  • Park, Won Mok
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.267-274
    • /
    • 1995
  • Based upon the nucleotide sequence of As strain of cucumber mosaic virus (CMV-As0 RNA4, coat protein (CP) gene was selected for the design of oligonucleotide primers of polymerase chain reaction (PCR) for detection and identification of the virus. Reverse transcription and polymerase chain reaction (RT-PCR) was performed with a set of 18-mer CMV CP-specific primers to amplify a 671 bp fragment from crude nucleic acid extracts of virus-infected leaf tissues as well as purified viral RNAs. The minimum concentrations of template viral RNA and crude nucleic acids from infected tobacco tissue required to detect the virus were 1.0 fg and 1:65,536 (w/v), respectively. No PCR product was obtained when potato virus Y-VN RNA or extracts of healthy plants were used as templates in RT-PCR using the same primers. The RT-PCR detected CMV-Y strain as well as CMV-As strain. Restriction analysis of the two individual PCR amplified DNA fragments from CMV-As and CMV-Y strains showed distinct polymorphic patterns. PCR product from CMV-As has a single recognition site for EcoRI and EcoRV, respectively, and the product from CMV-Y has no site for EcoRI or EcoRV but only one site for HindIII. The RT-PCR was able to detect the virus in the tissues of infected pepper, tomato and Chinese cabbage plants.

  • PDF

Detection and Molecular Identification of Human Enteric Viruses in Urban Rivers in Korea

  • Lee, Cheong-Hoon;Kim, Sang-Jong
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.171-171
    • /
    • 2008
  • We monitored the occurrence of human enteric viruses in urban rivers by cell culture-PCR and RT-nested PCR. Water samples were collected monthly or semimonthly between May 2002 and March 2003 in four urban tributaries. Enteric viruses were detected by RT-nested PCR and cell culture-PCR based on a combination of Buffalo Green monkey kidney (BGMK) and A549 cell lines, followed by phylogenetic analysis of amplicons. By RT-nested PCR analysis, 45 (77.6%), 32 (55.2%), 32 (55.2%), 26 (44.8%), 12 (20.7%), 2 (3.4%), 4 (6.9%), and 4 (6.9%) of 58 samples showed positive results with adenoviruses, enteroviruses, noroviruses (NV) genogroup I (GI) and II (GII), reoviruses, hepatitis A viruses, rotaviruses and sapoviruses, respectively. Adenoviruses were most often detected and only eight (13.8%) samples were negative for adenoviruses and positive for other enteric viruses in the studied sites. Thirty-one (77.5%) of the 40 samples were positive for infectious adenoviruses and/or enteroviruses based on cell culture-PCR, and the frequency of positive samples grown on A549 and BGMK (65.0%) was higher than that grown on BGMK alone (47.5%). The occurrence of each enteric virus, except reoviruses and hepatitis A viruses was not statistically correlated with the water temperature and levels of fecal coliforms according to Binary logistic regression model. By sequence analysis, most strains of adenoviruses and enteroviruses detected in this study are similar to the causative agent of viral diseases in Korea and most NV GI- and GII-grouped strains were closely related to the reference strains from China and Japan, and GII/4-related strains had similar sequences to strains recognized as a worldwide epidemic outbreak. Our results suggested that monitoring human enteric viruses is necessary to improve microbial quality and cell culture-PCR using the combination of A549 and BGMK cells and the adenovirus detection by PCR could be useful for monitoring viral contamination in the aquatic environment.

  • PDF

Evaluation of Japanese encephalitis virus vaccine strains currently used in pigs by molecular characterization

  • Lee, Jeong-Ah;Yang, Dong-Kun;Kim, Ha-Hyun;Kim, Sun-Young;Nah, Jin-Ju;Cho, Soo-Dong;Song, Jae-Young
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.3
    • /
    • pp.169-174
    • /
    • 2012
  • Japanese encephalitis virus (JEV) is one of the main causes of viral encephalitis in human and animals. For over 30 years, a live attenuated JEV vaccine strain has been used in the veterinary field, and it is required to conduct quality evaluation studies on the commercial vaccines. For the quality control of live attenuated JEV vaccine, we investigated the nucleotide sequence similarity of prME gene derived from five JEV vaccines commercially available in pigs in Korea. The Vero cells infected with JEV vaccines showed specific cytopathic effect, which was characterized by rounding and detached cells. In the phylogenetic analysis, all of the vaccine strains showed a close relationship with the original vaccine seed strain (Anyang 300) and clustered into the genotype 3. In comparison of the nucleotide and deduced amino acid sequences of prME genes with the original strain, all JEV vaccine strains showed high amino acid similarity ranging from 98.9% to 99.5%, but had several point mutations, probably due to high mutation rates of viral RNA polymerase by several virus passages. Even though the current JEV vaccine strains have been maintained and produced for a long period of time, the genetic characterization of them have been rarely changed. However, since the mid 1990's, molecular epidemiology of JEV has been changed sharply from genotype 3 to genotype 1 in Korea, further studies on new vaccine strains to genotype 1 is required for more effective prevention in the field.

Isolation and expression analysis of stimulator of interferon gene from olive flounder, Paralichthys olivaceus

  • Ma, Jeong-In;Kang, Sunhye;Jeong, Hyung-Bok;Lee, Jehee
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.3
    • /
    • pp.5.1-5.8
    • /
    • 2018
  • Stimulator of interferon gene (STING) is induced by various inflammatory agents, such as lipopolysaccharide and microbial pathogens, including virus and bacteria. In this study, we obtained a full-length cDNA of a STING homolog from olive flounder using rapid amplification of cDNA ends PCR technique. The full-length cDNA of Paralichthys olivaceus STING (PoSTING) was 1442 bp in length and contained a 1209-bp open reading frame that translated into 402 amino acids. The theoretical molecular mass of the predicted protein sequence was 45.09 kDa. In the PoSTING protein, three transmembrane domains and the STING superfamily domain were identified as characteristic features. Quantitative real-time PCR revealed that PoSTING expressed in all the tissues analyzed, but showed the highest level in the spleen. Temporal expression analysis examined the significantly upregulated expression of PoSTING mRNA after viral hemorrhagic septicemia virus (VHSV) stimulation. In contrast, no significant changes in the PoSTING expression were detected in Edwardsiella tarda-challenged group compared to the un-injected control. The expression of P. olivaceus type I interferon (PoIFN-I) was also highly upregulated upon VHSV challenge. These results suggest that STING might be involved in the essential immune defense against viral infection together with the activation of IFN-I in olive flounder.

Identification of Suitable Natural Inhibitor against Influenza A (H1N1) Neuraminidase Protein by Molecular Docking

  • Sahoo, Maheswata;Jena, Lingaraja;Rath, Surya Narayan;Kumar, Satish
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • The influenza A (H1N1) virus, also known as swine flu is a leading cause of morbidity and mortality since 2009. There is a need to explore novel anti-viral drugs for overcoming the epidemics. Traditionally, different plant extracts of garlic, ginger, kalmegh, ajwain, green tea, turmeric, menthe, tulsi, etc. have been used as hopeful source of prevention and treatment of human influenza. The H1N1 virus contains an important glycoprotein, known as neuraminidase (NA) that is mainly responsible for initiation of viral infection and is essential for the life cycle of H1N1. It is responsible for sialic acid cleavage from glycans of the infected cell. We employed amino acid sequence of H1N1 NA to predict the tertiary structure using Phyre2 server and validated using ProCheck, ProSA, ProQ, and ERRAT server. Further, the modelled structure was docked with thirteen natural compounds of plant origin using AutoDock4.2. Most of the natural compounds showed effective inhibitory activity against H1N1 NA in binding condition. This study also highlights interaction of these natural inhibitors with amino residues of NA protein. Furthermore, among 13 natural compounds, theaflavin, found in green tea, was observed to inhibit H1N1 NA proteins strongly supported by lowest docking energy. Hence, it may be of interest to consider theaflavin for further in vitro and in vivo evaluation.