• Title/Summary/Keyword: Video-conference

Search Result 2,926, Processing Time 0.034 seconds

Denoising 3D Skeleton Frames using Intersection Over Union

  • Chuluunsaikhan, Tserenpurev;Kim, Jeong-Hun;Choi, Jong-Hyeok;Nasridinov, Aziz
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.474-475
    • /
    • 2021
  • The accuracy of real-time video analysis system based on 3D skeleton data highly depends on the quality of data. This study proposes a methodology to distinguish noise in 3D skeleton frames using Intersection Over Union (IOU) method. IOU is metric that tells how similar two rectangles (i.e., boxes). Simply, the method decides a frame as noise or not by comparing the frame with a set of valid frames. Our proposed method distinguished noise in 3D skeleton frames with the accuracy of 99%. According to the result, our proposed method can be used to track noise in 3D skeleton frames.

A Study on Deep learning algorithm comparison for Block AI virus using thermal video and IoT (열영상과 IoT를 이용한 AI 바이러스 차단을 위한 딥러닝 알고리즘 비교에 대한 연구)

  • No, Seunghyun;seo, hojun;kim, hyein;Kim, Jeong-Min
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1097-1100
    • /
    • 2021
  • 열영상과 IoT를 이용한 AI 바이러스 차단 시스템 개발에 필요한 열화상 체온 측정기의 열 측정 정확도 향상과 얼굴 인식 시간 단축을 위해 열화상에 사용되는 딥러닝 알고리즘을 비교하며 효율적인 알고리즘 발굴 및 열영상을 이용한 바이러스 차단 시스템에 적합한 열영상 알고리즘 보완 방법을 찾는 연구이다.

A Study on Smart Safety Helmet Service Using IoT and Deep Learning Video Analysis (IoT와 딥러닝 영상분석을 이용한 스마트 안전모 서비스 연구)

  • Kwak, Woo-Chan;Hur, Ji-Woong;Kim, Min-Jeong;Sim, Bo-Kyoung;Kim, Hyun
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1055-1058
    • /
    • 2021
  • 2019년 산업재해 현황 분석 결과 복장, 보호구의 잘못 사용으로 사고가 발생한 비율이 20%로 높은 비율을 차지했고, 전체 사고자 중 두부 손상을 입은 비율이 41%로 가장 높은 비율을 보였다[1]. 고용 노동부가 발표한 '건설현장 추락위험 일제점검 결과(2021.7)'에서는 안전모 미착용 근로자가 32.6%를 차지하였다[2]. 우리는 ICT기술을 활용해 안전모의 기능개선 가능성을 확인하였고, 안전사고를 예방하고, 빠르게 감지할 수 있는 스마트 안전모를 개발하고자 하였다. 그리고 본 연구를 통해 IoT 센서들과 딥러닝 영상분석을 이용한 스마트 안전모 서비스는 작업 전 부정착용 방지, 작업 중 위험감지, 사고 발생 시 빠른 감지를 통한 신속한 대처를 목표로 하여, 안전한 작업환경을 만들 수 있는 가능성을 제시하고자 한다.

YOLO-based Video Non-identification Tool Development (YOLO기반 영상 비식별화 도구 개발)

  • Shin, Hyeong-Hwan;Park, Sung-Wan;Park, Sang-Hyun;Oh, Chi-Min;Kim, Seungwon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.875-877
    • /
    • 2021
  • 영상 매체의 발달과 영상 미디어의 쉬운 공유는 많은 이점을 가지고 왔다. 하지만 영상이 인터넷 상에서 쉽게 공유되면서 개인이 원치 않는 모습 및 정보가 자신도 모르게 공개되는 초상권 문제나 사생활 침해 문제가 발생하고 있다. 이를 막기 위해 영상의 인물을 비식별화 하고 있지만 수작업으로 진행되는 영상의 비식별화는 많은 시간과 비용이 들어간다. 이에 본 논문에서는 자동으로 영상의 인물을 탐지, 추적하여 비식별화 영상처리를 진행할 수 있는 YOLO 기반 비식별화 시스템을 제안한다.

Discriminating cheating through candidate behavior log and video data in an online test environment (온라인 시험 환경에서의 응시자 행동로그와 영상데이터 분석을 통한 부정행위자 감별)

  • Yeen, Heui-Yeen;Nam, Roah;Lee, Chung-Nyeong;Oh, Hye-Min;Woo, Tae-Kang
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1172-1175
    • /
    • 2021
  • 비대면 교육 형식이 보편화됨에 따라 온라인 학습 및 시험 형태가 교육기관에서 일반화되고 있다. 이러한 급격한 변화로 교육의 공정성 문제와 온라인 시험의 부정행위 문제가 대두되고 있다. 시험응시자의 다양한 환경을 고려하여 정확하게 부정행위자를 판별하는 방법이 중요해지고 있다. 이를 위해 본 연구에서는 온라인 시험환경에서의 응시자의 행동 데이터와 영상데이터 분석을 진행하여 부정행위자를 감별하는 연구를 진행하였다. 분석 결과 기존의 부정행위자 감별방식의 한계점을 보완할 수 있는 방식에 대해 제안하였으며 온라인 시험환경에 대한 시사점을 제공하였다.

GMM-based Moving Pigs Detection under Static Camera-based Video Monitoring (고정 카메라 기반 비디오 모니터링 환경에서 GMM을 활용한 움직인 돼지 탐지)

  • Lee, Sejun;Yu, Seunghyun;Son, Seungwook;Chung, Yongwha;Park, Daihee
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.860-863
    • /
    • 2021
  • 고정 카메라 환경에서 움직이는 객체만을 탐지하는 것은 비디오 모니터링의 중요한 응용 분야이다. 본 논문에서는 비디오의 특성인 움직임 정보가 포함된 영상에서 GMM을 이용하여 움직인 돼지와 움직이지 않은 돼지의 위치를 대략적으로 구분하고, 추가적인 영상 처리 기법과 딥러닝 기반 객체 탐지기를 적용한 박스 단위 객체 탐지 결과를 활용하여 움직인 돼지의 외곽선을 보정한다. 돈사에서 촬영된 비디오 데이터로 실험한 결과, 제안 방법은 효과적으로 움직인 돼지를 탐지할 수 있음을 확인하였다.

Development of intelligent video web service based on Micro-service architecture (마이크로 서비스 구조 기반 실시간 지능형 비디오 컨텐츠 제공 서비스 개발)

  • Yu, Miseon;Moon, Jaewon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.43-44
    • /
    • 2020
  • IoT 산업과 인공지능 기술의 발전으로 다양한 데이터를 분석하여 서비스에 쉽게 활용할 수 있게 되었다. 이에 대해 클라우드 기반으로 된 분석 기술이 주로 발전하였으나, 개인 정보 노출 위험성 및 네트워크 종속성 문제를 해결하기 위해 최근에는 엣지 기반으로 분석하고 클라우드와 협업하는 기술 연구가 활발하게 진행되고 있다. 리소스가 제한적인 엣지 디바이스 기반 환경에서 원활한 서비스를 제공하기 위해서는 서비스의 기능을 목적별로 최소화하여 독립적이고 경량화된 어플리케이션을 엣지에 배포하고 실행되게 해야 한다. 마이크로서비스 설계 기법은 이를 해결 할 수 있는 대표적인 방법으로 대두되고 있다. 본 논문에서는 여러 마이크로 서비스의 결과를 전달 받아 최종적으로 적합한 결과를 재생하는 컨텐츠 제공 서비스 구조를 제안하고 구현 결과를 소개하였다. 높은 데이터 처리 성능을 요구하는 영상 처리 서비스를 제공함에 있어 제안하는 방법을 활용하여 엣지 디바이스 활용 효율성을 높이고 보다 만족도 높은 컨텐츠 제공 서비스를 제공할 수 있다.

  • PDF

Delivery of Spatial Partitioning Information for Tile-based Adaptive Bitrate Streaming Using MMT Protocol (MMT 프로토콜을 활용한 타일 기반 적응형 비트율 스트리밍을 위한 영상 분할 정보 전달 기법)

  • An, Eunbin;Kim, Ayoung;Seo, Kwangdeok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.51-54
    • /
    • 2020
  • 본 논문에서는 360 도 VR 영상을 전송하는 기법의 일종인 타일 기반 전송을 MMT(MPEG Media Transport) 프로토콜 기반으로 구현하기 위하여 영상의 공간 분할 정보를 전달하는 방법을 소개한다. 360 도 VR 영상 전송은 대용량 미디어 전송인 동시에 사용자의 움직임에 따라 신속하게 적응적 영상을 전달해야 한다. 타일 기반 전송은 HEVC(High Efficiency Video Coding)의 MCTS(Motion Constrained Tile Sets) 기법을 이용하여 뷰포트에 해당하는 타일들을 고화질로 전달함으로써 이러한 요구사항을 해결한다. 반면, MMT 프로토콜은 초저지연 고화질 영상 전송에 유리한 기술로써 사용자의 시점 변화에 따라 기민하게 영상의 품질을 변환시킬 수 있다. 따라서 HEVC 의 SEI(Supplemental Enhancement Information) 메시지에 포함되는 타일들의 공간 분할 정보를 MMT 프로토콜에 적용하는 방식에 따라 적응적 타일 기반 전송 기법의 효율을 높일 수 있다.

  • PDF

Automatic Video Editing Application based on Climax Pattern Classified by Genre (장르별 클라이맥스 패턴 적용 자동 영상편집 어플리케이션)

  • Im, Hyejeong;Mun, Hyejun;Park, Gaeun;Lim, Yangmi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.611-612
    • /
    • 2020
  • 최근 유튜브, 네이버와 같은 플랫폼 사업자들은 다양하고 많은 동영상확보를 위해 최대한 시간을 적게 들이고 좋은 퀄리티의 영상을 자동으로 생성해주는 어플리케이션을 개발하는데 AI 기술을 적극적으로 사용하고 있다. 가장 주도적으로 진행하는 곳은 IBM 의 왓슨의 인지하이라이트 기술이다. 관중의 함성소리와 스포츠특성 데이터들을 활용하여 하이라이트 부분의 영상만 자동 생성하고 있다. 하지만 현재까지의 기술은 인간의 감성을 자극하는 스토리 전개방식의 자동영상 생성에 있어서는 부족한 부분이 많이 존재한다.이 에 본 논문은 영화의 클라이맥스 부분의 영상편집방식을 분석하여 이에 대한 장르별 샷 사이즈 변화패턴을 시각화한 후, 장르간 편집 차이점을 패턴화한 템플릿을 구축하여 사용자의 이미지 데이터들을 장르별 클라이맥스 패턴의 특성에 맞게 추천하여 짧은 영상을 자동 생성하는 어플리케이션을 개발하였다. 향후 본 연구는 1 인 미디어 산업 및 사이버교육 분야에서 가장 많이 소요되는 영상편집 시간을 단축하는데 큰 효율이 있을 것이라 기대한다.

  • PDF

A CNN-Based Method for Chroma Intra Prediction in HEVC (HEVC의 CNN 기반 색차신호 화면내 예측 기법)

  • Yeo, ChungKhang;Moon, HyeonCheol;Yoon, Yong-Uk;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.689-690
    • /
    • 2020
  • HEVC(High Efficiency Video Coding)의 색차신호 화면내 예측(Intra Prediction)은 복호화된 주변 화소로부터의 예측과 동일한 위치의 휘도신호의 예측 모드를 이용한 예측을 수행한다. 본 논문에서는 색차신호 화면내 예측의 성능 향상을 위하여 합성 곱 신경망(CNN: Convolutional Neural Network) 기반의 색차신호 예측 기법을 제안한다. 제안하는 기법은 복원된 주변 블록의 휘도 및 색차신호로부터 CNN 을 이용하여 현재블록의 색차신호를 예측한다. 실험결과 제안한 CNN 기반의 색차신호 예측 기법이 HEVC 의 색차신호 화면내 예측보다 향상된 성능을 보임을 확인하였다.

  • PDF