• Title/Summary/Keyword: Video detection

Search Result 1,347, Processing Time 0.021 seconds

Automatic Name Line Detection for Person Indexing Based on Overlay Text

  • Lee, Sanghee;Ahn, Jungil;Jo, Kanghyun
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.163-170
    • /
    • 2015
  • Many overlay texts are artificially superimposed on the broadcasting videos by humans. These texts provide additional information to the audiovisual content. Especially, the overlay text in news videos contains concise and direct description of the content. Therefore, it is most reliable clue for constructing a news video indexing system. To make the automatic person indexing of interview video in the TV news program, this paper proposes the method to only detect the name text line among the whole overlay texts in one frame. The experimental results on Korean television news videos show that the proposed framework efficiently detects the overlaid name text line.

Detection and Recognition of Illegally Parked Vehicles Based on an Adaptive Gaussian Mixture Model and a Seed Fill Algorithm

  • Sarker, Md. Mostafa Kamal;Weihua, Cai;Song, Moon Kyou
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2015
  • In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.

MPEG-1 Video Scene Change Detection Using Horizontal and Vertical Blocks (수평과 수직 블록을 이용한 MPEG-1 비디오 장면전환 검출)

  • Lee, Min-Seop;An, Byeong-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2S
    • /
    • pp.629-637
    • /
    • 2000
  • The content-based information retrieval for a multimedia database uses feature information extracted from the compressed videos. This paper presents an effective method to detect scene changes from compressed videos. Scene changes are detected with DC values of DCT coefficients in MPEG-1 encoded video sequences. Instead of decoding full frames. partial macroblocks of each frame, horizontal and vertical macroblocks, are decoded to detect scene changes. This method detects abrupt scene changes by decoding minimal number of blocks and saves a lot of computation time. The performance of the proposed algorithm is analyzed based on the precision and the recall. The experimental results show the effectiveness in computation time and detection rate to detect scene changes of various MPEG-1 video streams.

  • PDF

Visual Modeling and Content-based Processing for Video Data Storage and Delivery

  • Hwang Jae-Jeong;Cho Sang-Gyu
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • In this paper, we present a video rate control scheme for storage and delivery in which the time-varying viewing interests are controlled by human gaze. To track the gaze, the pupil's movement is detected using the three-step process : detecting face region, eye region, and pupil point. To control bit rates, the quantization parameter (QP) is changed by considering the static parameters, the video object priority derived from the pupil tracking, the target PSNR, and the weighted distortion value of the coder. As results, we achieved human interfaced visual model and corresponding region-of-interest rate control system.

Video Road Vehicle Detection and Tracking based on OpenCV

  • Hou, Wei;Wu, Zhenzhen;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.226-233
    • /
    • 2022
  • Video surveillance is widely used in security surveillance, military navigation, intelligent transportation, etc. Its main research fields are pattern recognition, computer vision and artificial intelligence. This article uses OpenCV to detect and track vehicles, and monitors by establishing an adaptive model on a stationary background. Compared with traditional vehicle detection, it not only has the advantages of low price, convenient installation and maintenance, and wide monitoring range, but also can be used on the road. The intelligent analysis and processing of the scene image using CAMSHIFT tracking algorithm can collect all kinds of traffic flow parameters (including the number of vehicles in a period of time) and the specific position of vehicles at the same time, so as to solve the vehicle offset. It is reliable in operation and has high practical value.

Video Segmentation Method using Improved Adaptive Threshold Algorithm and Post-processing (개선된 적응적 임계값 결정 알고리즘과 후처리 기법을 적용한 동영상 분할 방법)

  • Won, In-Su;Lee, Jun-Woo;Lim, Dae-Kyu;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.663-673
    • /
    • 2010
  • As a tool used for video maintenance, Video segmentation divides videos in hierarchical and structural manner. This technique can be considered as a core technique that can be applied commonly for various applications such as indexing, abstraction or retrieval. Conventional video segmentation used adaptive threshold to split video by calculating difference between consecutive frames and threshold value in window with fixed size. In this case, if the time difference between occurrences of cuts is less than the size of a window or there is much difference in neighbor feature, accurate detection is impossible. In this paper, Improved Adaptive threshold algorithm which enables determination of window size according to video format and reacts sensitively on change in neighbor feature is proposed to solve the problems above. Post-Processing method for decrement in error caused by camera flash and fast movement of large objects is applied. Evaluation result showed that there is 3.7% improvement in performance of detection compared to conventional method. In case of application of this method on modified video, the result showed 95.5% of reproducibility. Therefore, the proposed method is more accurated compared to conventional method and having reproducibility even in case of various modification of videos, it is applicable in various area as a video maintenance tool.

Semi-automatic System for Mass Detection in Digital Mammogram (디지털 마모그램 반자동 종괴검출 방법)

  • Cho, Sun-Il;Kwon, Ju-Won;Ro, Yong-Man
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • Mammogram is one of the important techniques for mass detection, which is the early diagnosis stage of a breast cancer. Especially, the CAD(Computer Aided Diagnosis) using mammogram improves the working performance of radiologists as it offers an effective mass detection. There are two types of CAD systems using mammogram; automatic and semi-automatic CAD systems. However, the automatic segmentation is limited in performance due to the difficulty of obtaining an accurate segmentation since mass occurs in the dense areas of the breast tissue and has smoother boundaries. Semi-automatic CAD systems overcome these limitations, however, they also have problems including high FP (False Positive) rate and a large amount of training data required for training a classifier. The proposed system which overcomes the aforementioned problems to detect mass is composed of the suspected area selection, the level set segmentation and SVM (Support Vector Machine) classification. To assess the efficacy of the system, 60 test images from the FFDM (Full-Field Digital Mammography) are analyzed and compared with the previous semi-automatic system, which uses the ANN classifier. The experimental results of the proposed system indicate higher accuracy of detecting mass in comparison to the previous systems.

Implementation of Real-Time Multi-Camera Video Surveillance System with Automatic Resolution Control Using Motion Detection (움직임 감지를 사용하여 영상 해상도를 자동 제어하는 실시간 다중 카메라 영상 감시 시스템의 구현)

  • Jung, Seulkee;Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.612-619
    • /
    • 2014
  • This paper proposes a real-time multi-camera video surveillance system with automatic resolution control using motion detection. In ordinary times, it acquires 4 channels of QVGA images, and it merges them into single VGA image and transmit it. When motion is detected, it automatically increases the resolution of motion-occurring channel to VGA and decreases those of 3 other channels to QQVGA, and then these images are overlaid and transmitted. Thus, it can magnifies and watches the motion-occurring channel while maintaining transmission bandwidth and monitoring all other channels. When it is synthesized with 0.18 um technology, the maximum operating frequency is 110 MHz, which can theoretically support 4 HD cameras.

Caption Detection and Recognition for Video Image Information Retrieval (비디오 영상 정보 검색을 위한 문자 추출 및 인식)

  • 구건서
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.7
    • /
    • pp.901-914
    • /
    • 2002
  • In this paper, We propose an efficient automatic caption detection and location method, caption recognition using FE-MCBP(Feature Extraction based Multichained BackPropagation) neural network for content based retrieval of video. Frames are selected at fixed time interval from video and key frames are selected by gray scale histogram method. for each key frames, segmentation is performed and caption lines are detected using line scan method. lastly each characters are separated. This research improves speed and efficiency by color segmentation using local maximum analysis method before line scanning. Caption detection is a first stage of multimedia database organization and detected captions are used as input of text recognition system. Recognized captions can be searched by content based retrieval method.

  • PDF

A New Change Detection Method Based on Macro Block Unit for Selective Video Coding (선택적 영상 부호화를 위한 매크로 블록단위의 변화영역 검출방법)

  • 최재각;권순각;이종극
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.172-180
    • /
    • 2003
  • This paper propose a new change detection algorithm based on macro block unit for selective video coding scheme. The conventional method badly decides a macro block of unchanged region into a changed macro block due to a noise of the difference images. To solve the problem of the conventional method, we propose a new test statistic which is robust to the noise of the difference image. As shown in experimental results(Fig. 1∼3), the proposed algorithm shows more accurate segmentation results than the conventional method. Also, because the proposed detection method reduces the average numbers of changed macro block per frame to 55∼60% than the conventional method, it can improve the performance of the selective video coding at lower bit rates.