DOI QR코드

DOI QR Code

Semi-automatic System for Mass Detection in Digital Mammogram

디지털 마모그램 반자동 종괴검출 방법

  • 조선일 (한국정보통신대학교 영상 및 비디오 시스템 연구실) ;
  • 권주원 (한국정보통신대학교 영상 및 비디오 시스템 연구실) ;
  • 노용만 (한국정보통신대학교 영상 및 비디오 시스템 연구실)
  • Published : 2009.04.30

Abstract

Mammogram is one of the important techniques for mass detection, which is the early diagnosis stage of a breast cancer. Especially, the CAD(Computer Aided Diagnosis) using mammogram improves the working performance of radiologists as it offers an effective mass detection. There are two types of CAD systems using mammogram; automatic and semi-automatic CAD systems. However, the automatic segmentation is limited in performance due to the difficulty of obtaining an accurate segmentation since mass occurs in the dense areas of the breast tissue and has smoother boundaries. Semi-automatic CAD systems overcome these limitations, however, they also have problems including high FP (False Positive) rate and a large amount of training data required for training a classifier. The proposed system which overcomes the aforementioned problems to detect mass is composed of the suspected area selection, the level set segmentation and SVM (Support Vector Machine) classification. To assess the efficacy of the system, 60 test images from the FFDM (Full-Field Digital Mammography) are analyzed and compared with the previous semi-automatic system, which uses the ANN classifier. The experimental results of the proposed system indicate higher accuracy of detecting mass in comparison to the previous systems.

Keywords

References

  1. S. Detounis, 'Computer-aided detection and second reading utility and Implementation in a high-volume breast clinic,' Applied Radiology, pp. 8-15, 2004
  2. Y. Choi, Y. J. Kim, H.-R. Shin, and K.-Y. Yoo, 'Long-term prediction of female breast cancer mortality in Korea,' Asian Pacific J Cancer Prev., vol.6, pp. 16-21, 2005
  3. 'Full-Field Digital Mammography,' Technology Evaluation Center Assessment Program, vol.17, No. 7, 2002
  4. S. K. Moore, 'Better breast cancer detection,' IEEE Spectrum, pp. 50-54, 2001
  5. S. M. Astley, 'Computer-based detection and prompting of mammographic abnormalities,' Br. J. Radiol., vol. 77, pp. 194- 200, 2004 https://doi.org/10.1259/bjr/30116822
  6. C. M.-Thoms, S. M. Dunn, C. F. Nodine, and H. L. Kundel, 'The perception of breast cancers - A spatial frequency analysis of what differentiates missed from reported cancers,' IEEE Trans. Medical Imaging, vol. 22, no. 10, pp. 1297-1306, 2003 https://doi.org/10.1109/TMI.2003.817784
  7. J. W. Kwon, H. K. Kang, Y. M. Ro, S. M. Kim, A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography, J. Biomed. Eng. Res., vol. 22, no. 10, pp.1297-1306, 2003
  8. H. D. Cheng, X.J. Shi, R. Min, L.M. Hu, X.P. Cai, and H.N. Du, 'Approaches for automated detection and classification of masses in mammograms,' Pattern Recognition, vol. 39, pp. 646-668, 2006 https://doi.org/10.1016/j.patcog.2005.07.006
  9. H. D. Li, M. Kallergi, L. P. Clarke, V. K. Jain, and R. A. Clark, 'Markov random field for tumor detection in digital mammography,' IEEE Trans. Med. Imag., vol. 14, pp. 565-576, 1995 https://doi.org/10.1109/42.414622
  10. Y.J. Lee, J.M. Park, H.W. Park, 'Mammographic mass detection by adaptive thresholding and region growing,' Int. J. Imaging Systems Technol. vol. 11, no. 5, pp. 340-346, 2000 https://doi.org/10.1002/ima.1018
  11. D. Cascio, F. Fauci, R. Magro, G. Raso, R. Bellotti, F. De Carlo, S. Tangaro, G. De Nunzio, M. Quarta, G. Forni, A. Lauria, M. E. Fantacci, A. Retico, G. L. Masala, P. Oliva, S. Bagnasco, S. C. Cheran, and E. Lopez Torres, 'Mammogram Segmentation by Contour Searching and Mass Lesions ClassificationWith Neural Network,' IEEE Trans. Nuclear Science, vol. 53, no. 5, pp. 2827-2833, 2006 https://doi.org/10.1109/TNS.2006.878003
  12. Y. Wang, X. B.Gao, and J. Li, 'A Feature Analysis Approach to Mass Detection in Mammography Based on RF-SVM,' ICIP07, vol.5, pp. 9-12, 2007
  13. I. Christoyianni, E. Dermatas, and G. Kokkinakis, 'Fast detection of masses in computer-aided mammography,' IEEE Signal Process. Mag. vol. 17, no. 1, pp. 54-64, 2000 https://doi.org/10.1109/79.814646
  14. M. A. Kupinski and M. L. Giger, 'Automated seeded lesion segmentation on digital mammograms,' IEEE Trans. Med. Imag., vol. 17, pp. 510-517, 1998 https://doi.org/10.1109/42.730396
  15. N. Petrick, H. P. Chan, B. Sahiner, and D. Wei, 'An adaptive density weighted contrast enhancement filter for mammographic breast mass detection,' IEEE Trans. Med. Imag., vol. 15, no. 1, pp. 59-67, 1996 https://doi.org/10.1109/42.481441
  16. B. Zheng, G. S. Maitz, M. A. Ganott, G. Abrams, G. K. Leader, and D.Gur, 'Performance and Reproducibility of a computerized Mass Detection Scheme for Digitized Mammography Using Rotated and Resampled Images : An Assessment,' American Journal of roentgenology, vol. 185, no. 1, pp. 194-198, 2005
  17. J. E. Ball, L. M. Bruce, 'Digital Mammographic Computer Aided Diagnosis (CAD) using Adaptive Level Set Segmentation,' 29th IEEE EMBS, 2007, pp. 4973-4978
  18. J. C. Felipe, M. X. Ribeiro, E. P. M. Sousa, A. J. M. Traina, C. Jr Traina, 'Effective shape-based retrieval and classification of mammograms,' Proceedings of the ACM symposium on Applied computing, 2006, pp. 250 - 255
  19. R. Campanini, D. Dongiovanni; E. Iampieri, N. Lanconelli, M. Masotti, G. Palermo, A. Riccardi, M. Roffilli, 'A novel featureless approach to mass detection in digital mammograms based on Support Vector Machines,' Physics in Medicine and Biology, vol. 49, no. 6, pp. 961-975, 2004 https://doi.org/10.1088/0031-9155/49/6/007
  20. U. von Luxburg, O. Bousquet, O. B. Scholkopf, 'A compression approach to support vector model selection,' The Journal of Machine Learning Research, vol. 5, pp. 293 - 323, 2004
  21. I. El-Naqa, Y. Yang, M. N. Wernick, N. P. Galatsanos, and R. M. Nishikawa, 'A support vector machine approach for detection of microcalcifications,' IEEE Trans. Med. Imag., vol. 21, pp. 1552-1563, 2002 https://doi.org/10.1109/TMI.2002.806569
  22. L. Wei, Y. Yang, R. M. Nishikawa, and Y. Jiang, “A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications,” IEEE Trans. Med. Imag., vol.24, no. 3, 2005
  23. Osher, S., and Sethian, J.A., 'Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,' Journal of computational Physics, vol. 79, pp. 12-49, 1988 https://doi.org/10.1016/0021-9991(88)90002-2
  24. Sethian, J.A., 'Fast Marching Level Set Methods for Three Dimensional Photolithography Development,' Proc. SPIE, 1996, pp. 261-272
  25. Simon Haykin, Neural networks, Upper Saddle River, NJ, : Prentice-Hall, 1999, pp. 318-350
  26. B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines, regularization, optimization, and beyond, London, England, The MIT Press, 2002
  27. J. E. Ball and L. M. Bruce, 'Level Set-Based Core Segmentation of Mammographic Masses Facilitating Three Stage (Core, Periphery, Spiculation) Analysis,' in Proc. EBMS, 2007, pp. 23-26
  28. D. M. Catarious, 'A Computer-Aided Detection System for Mammographic Masses.' PhD Dissertation in Biomedical Engineering. Durham, NC: Duke University, 2004
  29. D. M. Catarious, A.H. Baydush, and C.E. Floyd Jr., 'Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system,' Med. Physics, vol. 31, no. 6, pp. 1512-1520, 2004 https://doi.org/10.1118/1.1738960
  30. A. Agatheeswaran, 'Analysis of the effects of JPEG2000 compression on texture features extracted from digital mammograms.' Masters Thesis in Electrical and Computer Engineering. Starkville, Mississippi State University, pp. 20-37, 42-43, 2004
  31. B. Sahiner, H.-P. Chan, N. Petrick, M.A. Helvie, and M.M. Goodsitt, 'Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis,' Medical Physics, vol. 25, no. 4, pp. 516-526, 1998 https://doi.org/10.1118/1.598228
  32. K. Schutte and J. Glass, 'Robust detection of sonorant landmarks,' in Proc. Interspeech, 2005, pp. 1005-1008
  33. V. Vapnik, Estimation of dependencies based on empirical data, New York, Springer-Verlag, 1982