• Title/Summary/Keyword: Video Scheduling Mechanism

Search Result 15, Processing Time 0.021 seconds

Periodic I/O Scheduling for the Storage of MPEG-DASH Video Servers

  • Seong Chae Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.31-40
    • /
    • 2024
  • The proliferation of video streaming services has led to a need for flexible networking protocols. As a result, the Dynamic Adaptive Streaming over HTTP (MPEG-DASH) protocol has emerged as a dominant streaming protocol due to its ability to dynamically adjust playback bitrates according to the end-user's network conditions. In this paper, we propose a novel I/O scheduling scheme tailored for the storage of MPEG-DASH-enabled video servers. Using the renowned rate-reservation (RR) algorithm and bulk-SCAN mechanism, our proposed scheme improves storage bandwidth utilization while ensuring seamless playback of streams with varying bitrates. In addition, we provide a mechanism for reclaiming the idle I/O time typically incurred while retrieving video segments from storage. Consequently, our scheme offers practical solutions for reducing the storage costs of MPEG-DASH video servers. With a simple cost model, we evaluate the performance enhancements achieved by our proposed I/O scheduling scheme.

A Fast Universal Video Distribution Protocol For Video-On-Demand Systems (주문형 비디오 시스템을 위한 빠른 광범위한 비디오 배포 기법)

  • Kwon Hyeok Min
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.803-812
    • /
    • 2004
  • The performance of video-on-demand(VOD) systems is known to be mainly dependent on a scheduling mechanism which they employ. Broadcast-based scheduling schemes have attracted a lot of attention as an efficient way of distributing popular videos to very large client populations. The main motivations of broadcasting scheduling mechanisms are that they scale up extremely well and they have very modest bandwidth requirements. This paper studies this issue and proposes a new broadcasting scheduling mechanism, named fast universal video dis-tribution(FUVD). FUVD scheme dynamically constructs a video broadcasting schedule in response to client requests, and broadcasts video seg-ments according to this schedule. This paper also evaluates the performance of FUVD on the basis of a simulation approach. The simulation results indicate that FUVD protocol shows a superior performance over UD, CBHD, and NPB in terms of the average response time.

A Fast Dynamic Broadcasting Scheme For Video-On-Demand Systems (주문형 비디오 시스템을 위한 빠른 동적 방송 기법)

  • Kwon, Hyeok-Min
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.9
    • /
    • pp.433-444
    • /
    • 2005
  • In video-on-demand(VOD) systems, a broadcast-based scheduling mechanism is known to be a very efficient technique for disseminating popular videos to very large client populations. The main motivations of broadcasting scheduling mechanisms are that they scale up extremely well and they have very modest bandwidth requirements. This paper proposes a new dynamic broadcasting scheduling mechanism, named FDBS (fast dynamic broadcasting scheme), and proves its correctness. This paper also evaluates the performance of FDBS on the basis of a simulation approach. The simulation results indicate that FDBS shows a superior performance over UD, CBHD, and NPB in terms of the average response time with very reasonable bandwidth requirements.

Capacity aware Scalable Video Coding in P2P on Demand Streaming Systems

  • Xing, Changyou;Chen, Ming;Hu, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2268-2283
    • /
    • 2013
  • Scalable video coding can handle peer heterogeneity of P2P streaming applications, but there is still a lack of comprehensive studies on how to use it to improve video playback quality. In this paper we propose a capacity aware scalable video coding mechanism for P2P on demand streaming system. The proposed mechanism includes capacity based neighbor selection, adaptive data scheduling and streaming layer adjustment, and can enable each peer to select appropriate streaming layers and acquire streaming chunks with proper sequence, along with choosing specific peers to provide them. Simulation results show that the presented mechanism can decrease the system's startup and playback delay, and increase the video playback quality as well as playback continuity, and thus it provides a better quality of experience for users.

Efficient Support for Adaptive Bandwidth Scheduling in Video Servers (비디오 서버에서의 효율적인 대역폭 스케줄링 지원)

  • Lee, Won-Jun
    • The KIPS Transactions:PartC
    • /
    • v.9C no.2
    • /
    • pp.297-306
    • /
    • 2002
  • Continuous multimedia applications require a guaranteed retricval and transfer rate of streaming data, which conventional file server mechanism generally does not provide. In this paper we describe a dynamic negotiated admission control and dick bandwidth scheduling framework for Continuous Media (CM : e.g., video) servers. The framework consists of two parts. One is a reserve-based admission control mechanism and the other part is a scheduler for continuous media streams with dynamic resource allocation to achieve higher utilization than non-dynamic scheduler by effectively sharing available resources among contending streams to improve overall QoS. Using our policy, we could increase the number of simultaneously running: clients that coo]d be supported and cot]d ensure a good response ratio and better resource utilization under heavy traffic requirements.

Distortion Measurement based Dynamic Packet Scheduling of Video Stream over IEEE 802.11e WLANs

  • Wu, Minghu;Chen, Rui;Zhou, Shangli;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2793-2803
    • /
    • 2013
  • In H.264, three different data partition types are used, which have unequal importance to the reconstructed video quality. To improve the performance of H.264 video streaming transmission over IEEE 802.11e Wireless Local Area Networks, a prioritization mechanism that categorizes different partition types to different priority classes according to the calculated distortion within one Group of Pictures. In the proposed scheme, video streams have been encoded based on the H.264 codec with its data partition enabled. The dynamic scheduling scheme based on Enhanced Distributed Channel Access has been configured to differentiate the data partitions according to their distortion impact and the queue utilization ratio. Simulation results show that the proposed scheme improves the received video quality by 1dB in PSNR compared with the existing Enhanced Distributed Channel Access static mapping scheme.

Implementation of Class-Based Low Latency Fair Queueing (CBLLFQ) Packet Scheduling Algorithm for HSDPA Core Network

  • Ahmed, Sohail;Asim, Malik Muhammad;Mehmood, Nadeem Qaisar;Ali, Mubashir;Shahzaad, Babar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.473-494
    • /
    • 2020
  • To provide a guaranteed Quality of Service (QoS) to real-time traffic in High-Speed Downlink Packet Access (HSDPA) core network, we proposed an enhanced mechanism. For an enhanced QoS, a Class-Based Low Latency Fair Queueing (CBLLFQ) packet scheduling algorithm is introduced in this work. Packet classification, metering, queuing, and scheduling using differentiated services (DiffServ) environment was the points in focus. To classify different types of real-time voice and multimedia traffic, the QoS provisioning mechanisms use different DiffServ code points (DSCP).The proposed algorithm is based on traffic classes which efficiently require the guarantee of services and specified level of fairness. In CBLLFQ, a mapping criterion and an efficient queuing mechanism for voice, video and other traffic in separate queues are used. It is proved, that the algorithm enhances the throughput and fairness along with a reduction in the delay and packet loss factors for smooth and worst traffic conditions. The results calculated through simulation show that the proposed calculations meet the QoS prerequisites efficiently.

Server Side Solutions For Web-Based Video

  • Biernacki, Arkadiusz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1768-1789
    • /
    • 2016
  • In contemporary video streaming systems based on HTTP protocol, video players at the client side are responsible for adjusting video quality to network conditions and user expectations. However, when multiple video clips are streamed simultaneously, an intricate application logic implemented in the video players overlays the TCP mechanism which is responsible for a balanced access to a shared network link. As a result, some video players may not obtain a fair share of network throughput and may be vulnerable to an unstable video bit-rate. Therefore, we propose to simplify the algorithms implemented in the video players, which are responsible for the adjustment of video quality and constrain their functionality only to sending feedback to a server about a state of the player buffer. The main logic of the system is shifted to the server, which is now responsible for bit-rate selection and prioritisation of the video streams transmitted to multiple clients. To verify our proposition, we performed several experiments in a laboratory environment which show that when the server cooperates with the clients, the video players experience fewer quality switches and the system achieves better fairness when allocating network throughput among the video players. However, this comes at the cost of worse utilisation of network bandwidth.

Design and Performance Evaluation of Software RAID for Video-on-Demand Servers (주문형 비디오 서버를 위한 소프트웨어 RAID의 설계 및 성능 분석)

  • Koh, Jeong-Gook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.167-178
    • /
    • 2000
  • Software RAID(Redundant Arrays of Inexpensive Disks) is defined as a storage system that provides capabilities of hardware RAID, and guarantees high reliability as well as high performance. In this paper, we propose an enhanced disk scheduling algorithm and a scheme to guarantee reliability of data. We also design and implement software RAID by utilizing these mechanism to develop a storage system for multimedia applications. Because the proposed algorithm improves a defect of traditional GSS algorithm that disk I/O requests arc served in a fixed order, it minimizes buffer consumption and reduces the number of deadline miss through service group exchange. Software RAID also alleviates data copy overhead during disk services by sharing kernel memory. Even though the implemented software RAID uses the parity approach to guarantee reliability of data, it adopts different data allocation scheme. Therefore, we reduce disk accesses in logical XOR operations to compute the new parity data on all write operations. In the performance evaluation experiments, we found that if we apply the proposed schemes to implement the Software RAID, it can be used as a storage system for small-sized video-on-demand servers.

  • PDF

A Dual Transcoding Method for Retaining QoS of Video Streaming Services under Restricted Computing Resources (동영상 스트리밍 서비스의 QoS유지를 위한 듀얼 트랜스코딩 기법)

  • Oh, Doohwan;Ro, Won Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.7
    • /
    • pp.231-240
    • /
    • 2014
  • Video transcoding techniques provide an efficient mechanism to make a video content adaptive to the capabilities of a variety of clients. However, it is hard to provide an appropriate quality-of-service(QoS) to the clients owing to heavy workload on transcoding operations. In light of this fact, this paper presents the dual transcoding method in order to guarantee QoS in streaming services by maximizing resource usage in a transcoding server equipped with both CPU and GPU computing units. The CPU and GPU computing units have different architectural features. The proposed method speculates workload of incoming transcoding requests and then schedules the requests either to the CPU or GPU accordingly. From performance evaluation, the proposed dual transcoding method achieved a speedup of 1.84 compared with traditional transcoding approach.