
International Journal of Advanced Smart Convergence Vol.13 No.3 31-40 (2024)

http://dx.doi.org/10.7236/IJASC.2024.13.3.31

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Periodic I/O Scheduling for the Storage of MPEG-DASH Video Servers

Seong Chae Lim

Professor, Dept. of Computer Science, Dongduk Women’s University, Korea

sclim@dongduk.ac.kr

Abstract

The proliferation of video streaming services has led to a need for flexible networking protocols. As a result,

the Dynamic Adaptive Streaming over HTTP (MPEG-DASH) protocol has emerged as a dominant streaming

protocol due to its ability to dynamically adjust playback bitrates according to the end-user's network

conditions. In this paper, we propose a novel I/O scheduling scheme tailored for the storage of MPEG-DASH-

enabled video servers. Using the renowned rate-reservation (RR) algorithm and bulk-SCAN mechanism, our

proposed scheme improves storage bandwidth utilization while ensuring seamless playback of streams with

varying bitrates. In addition, we provide a mechanism for reclaiming the idle I/O time typically incurred while

retrieving video segments from storage. Consequently, our scheme offers practical solutions for reducing the

storage costs of MPEG-DASH video servers. With a simple cost model, we evaluate the performance

enhancements achieved by our proposed I/O scheduling scheme.

Keywords: MPEG-DSAH, Video Server, I/O Scheduling, Streaming Service, Periodic Scheduling.

1. Introduction

In recent decades, there has been the remarkable growth of online video streaming services on the Internet.

During this time, the ratio of network bandwidth caused by video streaming services has increased by around

24% annually, and now accounts for more than 65% of total Internet bandwidth [1]. This proliferation of

streaming services partially relies on the advent of efficient protocols that can seamlessly transfer video

contents to end-users' devices [2-4]. For a quality end-user experience, these protocols have been developed

to adjust the data transfer rate depending on the varying network conditions of end users [3, 4]. For instance,

when end-user's network conditions deteriorate, it is desirable to downgrade the bitrate of a video stream in

service, thereby preventing hiccups. Conversely, if the network condition improves, the initial bitrate will be

restored to enhance playback quality [4].

To facilitate such dynamic bitrate adjustments of video streams, the computing community has accepted the

Dynamic Adaptive Streaming over HTTP (MPEG-DASH) protocol as a prominent protocol [2, 4]. The MPEG-

DASH protocol enables video servers to store various bitrates of video segments for a single video stream.

Correspondingly, an end-user has the ability of switching between different bitrates of video streams based on

IJASC 24-3-4

Manuscript Received: July. 5. 2024 / Revised: July. 12. 2024 / Accepted: July. 17. 2024

Corresponding Author: sclim@dongduk.ac.kr

Tel: +82-02-940-4589, Fax: +82-02-940-4170

Professor, Dept. of Computer Science, Dongduk Women’s University, South Korea

32 International Journal of Advanced Smart Convergence Vol.13 No.3 31-40 (2024)

its network conditions. The widespread adoption of MPEG-DASH is largely due to its inherent openness that

leads to extensive support by web browsers [5]. Currently, major Tech. companies such as Google, Apple,

Netflix, and Amazon provide their video streaming services based on the MPEG-DASH protocol [6-8]. In this

context, we propose an efficient I/O scheduling scheme that can improve the performance of storage systems

of MPEG-DASH video servers.

In the MPEG-DASH specification, the playback time of a video content is divided into equal-sized time

intervals, called Periods [3]. For the support of multiple bitrates of playback, different resolutions of video

segments are stored for each Period. Since an MPEG-DASH stream repeatedly issues data requests according

to its Periods, periodic I/O scheduling may be advantageous for MPEG-DASH streaming services. To enable

this periodic scheduling, we employ the rate-reservation (RR) scheduling algorithm, originally devised for

CPU scheduling of periodic tasks [9]. To apply the RR algorithm to our scheduling problem, we introduce the

concept of a time unit in I/O scheduling. Based on this scheduling time unit, we execute bulk-SCANs to meet

deadlines of data requests asking for video segments [10]. To further enhance the effectiveness of the bulk-

SCAN, our proposed scheme reclaims idle times, which usually occur at the end of bulk-SCANs. This

approach helps the devolvement of cost-effective MPEG-DASH servers. Using a cost model tailored for

storage, we demonstrate the performance advantages of the proposed I/O scheme.

The paper is organized as follows. In Section 2, we describe the MPEG-DASH specification and our basic

idea based on this protocol. Section 3 presents the proposed I/O scheduling scheme, and Section 4 shows

performance benefits of the proposed scheme. Finally, we conclude the paper in Section 5.

2. Basic Idea

To design a cost-effective MPEG-DASH storage system, we first need to understand the specification of

that. MPEG-DASH utilizes Media Presentation Description (MPD) files to expose playback options and

locations of saved contents [3, 7]. The MDP file, downloaded to end-users from an MPEG-DASH server,

divides playback duration into equal-sized time intervals, called Periods. For each Period of a stream, multiple

Adaptations are defined to present distinct data types such as video, audio, subtitle texts.

Figure 1 gives a MPD file example where three Adaptations are made for the second Period. Let us assume

that the first Adaptation is for video data. Then, more than one Representations can be saved for specifying

different bitrates of video streams as in Figure 1. Each Representation has metadata and locations of stored

video segments. In the figure, the second Representation is for a video stream with bitrate of 1.5 Mbps, and it

contains the locations of the video segments that are played back during the second Period. Since the end-user

has downloaded the MDP file at its local memory, it can change the bitrates of a stream by using multiple

Representations made for a Period [5, 7].

Figure 1. Typical organization of an MPD file.

MPD File

Period ID = 1

Period ID = 2

Period ID = 3

Period ID 2

Adaptation 0

Adaptation 1

Adaptation 2

Adaptation set 0

Representation 1

4 Mbps

Representation 2

1.5 Mbps

Representation 3

400 Kbps

Representation 2

Meta Info.

Video Segment 1

start = 0 second

File name (URL)

Video Segment 2

start = 10 second

File name (URL)

Periodic I/O Scheduling for the Storage of MPEG-DASH Video Servers 33

As depicted in Figure 1 MPEG-DASH streaming is served based on Periods specified in an MDP file. In

the respect of storage of a video server, we can make I/O scheduling more efficient by using a periodic

scheduling concept. Recall that video segments are requested on the per-Period basis. That is, an MPEG-DASH

end-user sends request messages asking for consecutive segments [𝑣1, 𝑣2, 𝑣3, …, 𝑣𝑛] for a given Period. In

that case, those video segments of 𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑛) have the same deadline. To prevent hiccups, all the video

segments for Period k have the deadline of the beginning point of Period k. Such deadline assignment is

repeated for each Period during playback.

To leverage the periodic nature of I/O requests in MPEG-DASH streams, we adopt the RR (Rate

Reservation) algorithm for our I/O scheduling problem [9, 10]. Since the RR algorithm was originally devised

for CPU scheduling of periodic tasks, its adoption for our problem requires a conceptual bridge between the

usage of CPU time and the usage of I/O bandwidth.

For this, we introduce the concept of the rate of bandwidth usage, which is conceptually the same as CPU

utilization computed for a periodic task. To compute the bandwidth rate, our scheduling scheme utilizes the

fact that the endpoints of stream’s Periods only arise at multiples of a given time unit. Our time unit concept

is analogous to the minimum interval defined in the RR scheduling algorithm. Since there is a minimum time

interval between the deadlines of video segments, we can perform bulk-SCANs to reduce seek-time I/O

overheads. Further details are presented in the following section.

3. Proposed Algorithm for MPEG-DASH Server Storage

3.1 Rate-Reservation Algorithm

The RR algorithm is a CPU scheduling algorithm used for processing mixed workloads of periodic and

sporadic tasks [9]. The algorithm assumes that all the occurrences of periodic tasks have a minimum occurring

interval. This interval is termed as the minimum interval in the RR algorithm. Moreover, release points of

period tasks coincide with any of integral multiples of the minimum interval. Therefore, if we denote the length

of the minimum interval by L, then all deadlines of periodic tasks arise time points of 𝑛 × 𝐿 (n = 1, 2, …) [9,

10]. A notation task (C, k) represents a periodic task that requires CPU time of length C with a period length

of 𝑘 × 𝐿. The task is first released at time 𝑠 × 𝐿, then its scheduling deadlines are the same as (s + 𝑖 × 𝑘)

× 𝐿 (𝑖 = 1, 2, 3, …) where 𝑠 and 𝑖 are integers.

The RR scheduler computes the CPU utilization of task (C, k) as
𝐶

𝑘×𝐿
, and ensures deadline-guaranteeing

scheduling of periodic tasks while their total CPU utilization does not exceed 1. The total CPU utilization U is

computed as ∑ 𝐶𝑖/(𝑘𝑖 × 𝐿)𝑖 , for admitted tasks τi(𝐶𝑖, 𝑘𝑖). More specifically, the RR scheduler can guarantee

deadlines of all periodic tasks by using only the time of U × 𝐿 in each minimum interval. During each

minimum interval, the RR scheduler serves periodic tasks within U × 𝐿 time according to the Earliest

Deadline First (EDF) policy. Since the remaining time of (1 – U) × 𝐿 is free, it can be utilized for serving

sporadic tasks. By repeating this scheduling in every minimum interval, the RR scheduler achieves optimal

CPU utilization for mixed workloads of periodic and sporadic tasks [9].

3.2 Adoption of the RR Algorithm for I/O Scheduling

An MPEG-DASH stream issues requests for video segments on a period basis, by choosing a Representation

suitable to its network condition [5, 8]. This is illustrated in Figure 2. In the figure, a video stream has three

Representations that are made for locating different bitrates of video segments. We also denote the videos

34 International Journal of Advanced Smart Convergence Vol.13 No.3 31-40 (2024)

stream being coded with different bitrates of video segments by A, B, and C. The representations for those

video stream groups are denoted by 𝑅𝐴,𝑝, 𝑅𝐵,𝑝, 𝑅𝐶,𝑝, respectively. Here, p is the ID of the associated Period.

In this example, if the stream changes its Representation from 𝑅𝐴,1 to 𝑅𝐵,2 in the next Period, then it will

issue data requests asking for segments 𝐵2,1, 𝐵2,2, …, 𝐵2,𝑛 for Period 2.

Figure 2. An example of video streaming over two periods.

In our I/O scheduling, the deadlines of video segments are set to the beginning points of their Periods. For

example, the deadline of requests for 𝐴2,𝑖 (1 ≤ 𝑖 ≤ 𝑙) is set to the beginning point of Period 2. By reading

video segments before their Period, hiccup-free playback is guaranteed during that Period [10]. If we make

Periods of streams have a minimum interval between them, we can also utilize the concept of the minimum

interval time of the RR scheduler. Since Periods of MPEG-DASH streams are specified in seconds [3], we can

choose one second as the minimum interval for our I/O scheduling. In this paper, we refer to this as TUI (Time

Unit for I/O scheduling).

The RR algorithm is based on the concepts of CPU utilization of a periodic task and the total utilization for

all served periodic tasks. Similarly, we employ the I/O bandwidth utilization of an MPEG-DASH stream,

called the bandwidth usage rate (BUR). For a stream requesting k video segment per n seconds, its BUR is

calculated as in Eq. (1).

BUR =
𝑘

𝐾 × 𝑛
, where K is an given I/O parameter. (1)

In Eq. (1), the integral parameter K represents the number of video segments retrieved within a single TUI

(i.e. one second). The way to determine K will be described in the following subsection. The total usage of I/O

bandwidth is computed by adding up all the BURs of served streams. To retrieve video segments on a per-TUI

basis, our I/O scheduler processes a batch of I/O requests within each TUI, selecting those I/O requests based

on the RR policy.

3.3 Proposed Scheduling Algorithm

A file system is usually organized and accessed in the unit of a block that resides on a physically continuous

region in storage [6, 11]. A video segment is stored in a storage block, and a data request is issued for reading

it. For a stream with a greater bitrate, the MPEG-DASH server transits more video segments for each Period.

Period 1

𝑅𝐴,1

𝐴1,1 𝐴1,2 𝐴1,

𝑅𝐴,2

𝐴2,1 𝐴2, 𝐴2,2

Period 2

next
Periods

end-user 𝐵1,1 𝐵1,2 𝐵1, 𝐵2,1 𝐵2, 𝐵2,2

𝐶1,1 𝐶1,2 𝐶1,𝑛 𝐶2,1 𝐶2,𝑛𝐶2,2
switching btw.
multiple representations

𝑅𝐵,1 𝑅𝐵,2

𝑅𝐶,1 𝑅𝐶,2

Periodic I/O Scheduling for the Storage of MPEG-DASH Video Servers 35

We consider two types of MPEG-DASH storage: HDD (Hard Disk Drive) and NAND SSD (Solid State

Device). In the case of SSD storage, the parameter K is easily obtainable [10, 11]. Since flash memory provides

a uniform time for reading a block regardless of its location in storage, the value of K can be computed by

using I/O specifications of a target SSD [11]. When we have the time t for reading a block from the SSD

specifications, we compute K such that K = ⌈
𝑇𝑈𝐼

𝑡
⌉.

Unlike SSD storage, HDD storage cannot read a block in a uniform time due to its rotational delay and seek

times. Consequently, the number of video segments readable during a TUI varies depending on their locations

on HDD. For this reason, deadline-meeting scheduling for HDD storage is not feasible without significantly

sacrificing I/O performance [10, 12]. To address this problem, we borrow a SCAN-based disk scheduling

scheme proposed in the prior literature [10, 12]. In the literature, the authors introduced the bulk-SCAN scheme,

which performs one-directional disk movements to retrieve a group of blocks in batch mode. By retrieving a

group of blocks in a single disk scan, the bulk-SCAN scheme significantly reduces seek-time overheads.

In the literature, the time to retrieve k blocks using a bulk-SCAN is computed as shown in Eq. (2). In the

equation, 𝑇𝑟𝑒𝑣 denotes the disk revolution time, and 𝑇𝑐𝑦 denotes the total number of disk cylinders. The

function 𝑇𝑠𝑒𝑒𝑘(𝑑) returns the seek-time required to relocate the disk head across d cylinders. The proof of Eq.

(2) can be found in [12].

𝑇(𝑘) ≤ 𝑘 × 𝑇𝑟𝑒𝑣 + (𝑘 + 1) × 𝑇𝑠𝑒𝑒𝑘 (
𝑁𝑐𝑦𝑙
𝑘+1
) (2)

Using Eq. (2), we can compute a deadline-guaranteed number of blocks readable within a TUI. By selecting

an integer that satisfies Eq. (3) below, we can determine the system parameter K.

 𝑇(𝐾) ≤ 𝑇𝑈𝐼 < 𝑇(𝐾 + 1) (3)

With the parameter K, we can compute the deadline-guaranteed I/O bandwidth of the storage. We denote

that by 𝐵𝑈𝑇𝐼, and its value is calculated using Eq. (4).

 𝐵𝑈𝑇𝐼 =
𝐵 𝑜𝑐𝑘𝑆𝑖𝑧𝑒 × 𝐾

𝑈𝑇𝐼
 (bytes/sec.) (4)

In Eq. (4), 𝐵𝑈𝑇𝐼 represents the size of a block in storage. From Eq. (3) and Eq. (4), we have determined

two parameters: K and 𝐵𝑈𝑇𝐼, respectively. Using these parameters, we schedule I/O requests from MPEG-

DASH streams based on the RR algorithm.

We describe the proposed scheduling algorithm using Figure 3, which is executed at the beginning of each

TUI. In line 3, the proposed algorithm calculates the total BUI of the video streams in service. Then, it admits

new video streams within the free capacity of storage bandwidth by following the steps of lines 4-7. In lines

8-12, the algorithm places data requests for serviced video streams into queue 𝑄𝑣, while assigning appropriate

periodic deadlines to these requests for a bulk-SCAN. The bulk-SCAN then retrieves the data requests in 𝑄𝑣

as described in lines 13-16. Finally, the algorithm computes the size of idle time and performs non-video data

retrieval by reclaiming this idle time, as described in lines 17-18.

36 International Journal of Advanced Smart Convergence Vol.13 No.3 31-40 (2024)

Figure 3. Scheduling algorithm executed at a TUI starting point, 𝑻𝒊.

4. Advantages of the Proposed Scheduling Scheme

4.1 Soundness of the Proposed Algorithm

The RR algorithm guarantees deadlines of periodic tasks, while also serving sporadic tasks. The

schedulability of the algorithm relies on the assumption that all periodic tasks are released only at the

boundaries of a specific minimum interval [9, 10]. Figure 4 illustrates an example of RR scheduling scenarios

occurring over two minimum intervals. In the figure, the notation 𝜏𝑛
𝑖 represents the n-th scheduled periodic

task during the i-th minimum interval. During these minimum intervals, three and two periodic tasks are

scheduled, respectively.

Figure 4. An example of periodic task scheduling using the RR algorithm.

In the case of (i+1)-th minimum interval shown in Figure 4, some idle time has arisen at the end of it. This

time

i-th minimum interval (i+1)-th minimum interval

𝑇𝑖 𝑇𝑖 1 𝑇𝑖 2

𝜏1
𝑖 𝜏2

𝑖 𝜏3
𝑖 𝜏1

𝑖 1 𝜏2
𝑖 1

Periodic I/O Scheduling for the Storage of MPEG-DASH Video Servers 37

idle time is common in RR scheduling because the CPU utilization of periodic tasks is not 100% full. To

reclaim this idle time, the RR scheduler can use it for scheduling sporadic tasks. More specifically, such

reclamation time is calculated as the (1 - 𝑈𝑇) portion of a minimum interval. This proactive scheduling of

sporadic tasks helps ensure optimal performance when a mixture of periodic and sporadic tasks is scheduled

[9].

Now, we demonstrate the scheduling capability of the proposed RR-based I/O scheduling. Let us look into

the scheduling of tasks 𝜏1
𝑖 , 𝜏2

𝑖 , 𝜏3
𝑖 in Figure 4. When d(𝜏) represents the deadline of a task 𝜏, it holds that

d(𝜏1
𝑖) ≤ 𝑑(𝜏2

𝑖) ≤ 𝑑(𝜏3
𝑖). In the case of the RR algorithm, we can freely rearrange the scheduling orders of

𝜏1
𝑖 , 𝜏2

𝑖 , and 𝜏3
𝑖 without missing any deadline. Recall that all deadlines arise only at the ends of minimum

intervals, namely 𝑇𝑗 (i < j).

 The above ability to permute scheduling orders is vital for our I/O scheduling scheme designed for MPEG-

DASH servers. When a bulk-SCAN retrieves video segments during a TUI, the retrieval order depends on

their relative cylinder locations, regardless of their deadlines. Since the deadlines of video segments coincide

with the ends of TUIs, our I/O scheduling scheme does not need to consider the urgency of deadlines of video

segments, similar to CPU scheduling of periodic tasks in the original RR scheduler. Consequently, the

proposed scheduling algorithm can ensure deadline-compliant I/O schedules by executing bulk-SCANs for

HDD storage.

Unlike HDD storage, flash storage offers uniform time for random reads of video segments. As a result,

the EDF algorithm can be used for determining the retrieval orders of video segments. If n segments are

retrieved in a TUI, then n can simply be used as the parameter K. Consequently, our proposed scheme is

applicable to MPEG-DASH services on both HDD storage and SSD storage platforms [13].

4.2 Evaluations of Enhanced I/O Performance

As mentioned previously, our proposed scheduling scheme is applicable to both SSD storage and HDD

storage. Since HDD storage is more commonly accepted for streaming services [6], we focus on analyzing the

performance advantages in the case our scheme is used for an HDD storage system. To enhance I/O efficiency,

our scheduling scheme performs bulk-SCANs with deadlines. Since the time estimation for bulk-SCAN

scheduling is based on worst-case I/O scenarios, each TUI usually contains some idle time in itself.

For instance, the (i+1)-th TUI contains idle time, as shown in Figure 4. This idle time may occur for two

reasons: (i) the actual retrieval time is shorter than the pre-estimated worst-case time in scheduling, and (ii) the

workload of streams does not always consume the maximum bandwidth capacity. Therefore, to improve the

utilization of HDD storage, it is crucial to reclaim this idle time efficiently.

To reclaim idle time, we capitalize on the idea used in the original RR scheduler for serving sporadic tasks.

Our scheduler allocates a portion of I/O bandwidth to serve data requests issued from MPEG-DASH streams.

Then, we estimate the remaining time until the end of the current TUI. When we denote the idle time size by

𝑡𝑖𝑑 𝑒 , our scheduler can compute the number of blocks that a bulk-SCAN retrieves within 𝑡𝑖𝑑 𝑒 . This

computation is done using the function 𝐹(𝑡𝑖𝑑 𝑒) described below.

 𝑛 = 𝐹(𝑡𝑖𝑑 𝑒) { 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝑛 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑇𝑠𝑒𝑒𝑘 (
𝑁𝑐𝑦𝑙

𝑛 1
) + 𝑛 × 𝑇𝑟𝑒𝑣 ≤ 𝑡𝑖𝑑 𝑒 ; }

38 International Journal of Advanced Smart Convergence Vol.13 No.3 31-40 (2024)

Using the return value n, our scheduler retrieves up to n additional blocks. When selecting these additional

blocks, our scheduler prefers non-video blocks. This reclamation of idle time is conceptually similar to the

way the original RR scheduler serves sporadic tasks in each minimum interval time [9, 10].

To demonstrate the performance advantages of our scheduling scheme, we evaluate the size of I/O

bandwidth that is reclaimed by retrieving non-video blocks using idle times. For this, we invent a simple

performance evaluation model. The performance model is based on a modern HDD with the hardware

specification given in Table 1. In the table, the capacity and speed of a Seagate HDD are described. The HDD

has the sector size of 4 KB and the maximum rotational time of about 8.3 milliseconds, respectively.

Table 1. Hardware specification of Seagate ST2000DM008

In the proposed scheduling scheme, two factors mainly dominate the amounts of idle time within TUIs.

First, the length of a TUI has an impact on the size of idle time, and this length varies by adjusting the value

of parameter K. The larger the value of K, the longer the TUI. Increasing the length of TUI typically leads to

an increased amount of idle time. Second, the block size influences the amount of idle time. An MPEG-DASH

video file consists of sequential video segments, each of which is stored in a single disk block. In this situation,

as the block size gets smaller, the ratio of rotational delay to the disk revolution time increases.

From these observations related to two factors above, we can estimate performance advantages obtainable

in the proposed scheme. Table 2 shows the performance enhancements that are estimated based on our

performance evaluation model. In the table, Case A/B/C (x%) represent evaluation environments, where the

real number x denotes the percentage of average rotational delay to the disk revolution time. As stated before,

this depends on the block size. By varying the values of K, we can achieve I/O enhancement using the proposed

scheduling scheme that reclaims idle time.

Table 2. Performance enhancements with respect to scheduling parameters.

Periodic I/O Scheduling for the Storage of MPEG-DASH Video Servers 39

The real number x is calculated as (RT-AT)/RT. Here, RT represents the revolution time of the HDD listed

in Table 1, and AT is the actual rotational delay time taken to read a video segment. The magnitude of AT

depends on the block size. When we use larger block sizes, the rotational delay AT decreases. Since a video

segment typically occupies less than 4% of a track’s size, the ratio of rotational delay is generally below 50%.

Therefore, we set the ratio to 10%, 20%, and 30% in Table 2 to reflect this observation,

In Table 2, it is clear that the size of TUI does not significantly affect the performance enhancement. Recall

that the size of a TUI is dependent on the value of parameter K. Instead, the ratio of rotational delay acts as a

crucial factor in our approach. By setting K to 100, we adjust the size of TUI to one second. Since the Periods

of MPEG-DASH streams are defined in the unit of one second, setting K to around 100 is reasonable. Under

these conditions, our proposed mechanism improves I/O performance by 7% to 23%, as shown in Table 2.

Consequently, we can say that the proposed scheduling scheme ensures fast I/O times for reading non-video

data as well as the video segments of MPEG-DASH streams.

5. Conclusion

MPEG-DASH is the most popular protocol used for video streaming services on the Internet. The protocol

supports the dynamic adjustments of stream bitrates to ensure seamless playback under challenging network

conditions. Correspondingly, an MPEG-DASH video server must dynamically allocate I/O bandwidth to

accommodate MPEG-DASH streams with varying bitrates. To this end, we proposed a novel Rate-Reservation

(RR) scheduling scheme suitable for the storage needs of MPEG-DASH video servers. To employ the RR

algorithm for our I/O scheduling, we used the bulk-SCAN scheme suitable for retrieving video segments in a

periodic manner. This periodic scheduling is largely suited for MPEG-DASH streams, which consume data

according to the periods specified in their MPD files. Thanks to deadline-guaranteeing bulk-SCANs, our

scheme offers improved storage bandwidth and hiccup-free delivery of video segments. Moreover, by

reclaiming idle time arising in each bulk-SCAN, we can boost I/O performance for HDD storage. Through

analytical modeling, we have demonstrated that the proposed scheme can reduce storage costs for MPEG-

DASH streaming services.

Acknowledgement

This work was supported by the Dongduk Women’s University grant in 2022.

References

[1] Sandvine, Global Internet Phenomena Report, https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/

Downloads/2023/reports/Sandvine%20GIPR%202023.pdf.

[2] CDNetworks, “How MPEG-DASH is Revolutionizing Video Streaming?”, https://www.cdnetworks.com/media-

delivery-blog/mpeg-dash-revolutionizing-video-streaming/

[3] R. Pantos and E.W. May, “HTTP Live Streaming,” IETF Internet Draft, 2017.

[4] Michail Michalos and Stelios Kessanidis, "Dynamic adaptive streaming over HTTP," Journal of Engineering Science

and Technology Review, Vol. 5, No. 2, pp. 30-34, June 2012.

DOI:10.25103/jestr.052.06.

[5] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger Zimmermann, "A Survey on Bitrate Adaptation

Schemes for Streaming Media Over HTTP," IEEE Communications Surverys & Tutorials, Vol. 21, No. 1, pp. 562-585, 2019.

DOI: 10.1109/COMST.2014.2360940

[6] A. Abdelsalam, M. Luglio, M. Quadrini, C. Roseti, and F. Zampognaro, "Analysis of DASH Performance over Time-

varying End-to-end Links," Computers & Electrical Engineering, Vol. 84, June 2020.

40 International Journal of Advanced Smart Convergence Vol.13 No.3 31-40 (2024)

DOI: 10.1016/j.compeleceng.2020.106623.

[7] Dorsaf Sebai, "MPEG-DASH Parametrisation for Adaptive Online Streaming of Different MOOC Videos

Categories, " Multimedia Tools and Applications, Vol. 80, pp. 33193–33212, August 2021.

DOI:10.1007/s11042-021-11352-7

[8] A. Sideris, E. Markakis, N. Zotos, E. Pallis, and C. Skianis, “MPEG-DASH users’ QoE: The Segment Duration

Effect,” in Proc. of the International Workshop on Quality of Multimedia Experience (QoMEX), pp. 262-9, Jul.

2015.

DOI:10.1109/QoMEX.2015.7148117

[9] Kang G. Shin and Yi-Chieh Chang. “A Reservation-Based Algorithm for Scheduling Both Periodic and Aperiodic Real-Time

Tasks”, IEEE Trans. on Computers, Vol. 44, No. 12, pp. 405–1419, 1995.

DOI: 10.1109/12.477246

[10] Seong-Chae Lim, "Calculation of Free Bandwidth for Rate-reservation EDF Scheduling in Flash Storage," International Journal of

Computer Sciences and Engineering, Vol.8, No. 4, Apr 2020.

DOI: 10.26438/ijcse/v8i4.115

[11] Stephan Baumann, Giel de Nijs, Michael Strobel, and Kai-Uwe Sattler, “Flashing Databases: Expectations and Limitations,” in Proc.

of ACM Data Management on New Hardware, pp. 9-18, June 2010.

DOI: 10.1145/1869389.1869391

[12] D. Kandlur M. Chen and P. Yu. “Optimization of Grouped Sweeping Scheduling (GSS) with Heterogeneous Multimedia Systems”.

in Proc. of the ACM Multimedia., pp. 235 –242, Sept. 1993.

DOI: 10.1145/166266.166293

[13] Jaeseung Kim, Seyun Choi, Seunghyun Lee, and Soonchul Kwon, “Real-Time Earlobe Detection System on the

Web,” International Journal of Advanced Smart Convergence, Vol. 10, No. 4, pp. 110-116, 2021.

DOI: 10.7236/IJASC.2021.10.4.110

