• Title/Summary/Keyword: Video Image Analysis

Search Result 532, Processing Time 0.024 seconds

Caption Extraction in News Video Sequence using Frequency Characteristic

  • Youglae Bae;Chun, Byung-Tae;Seyoon Jeong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.835-838
    • /
    • 2000
  • Popular methods for extracting a text region in video images are in general based on analysis of a whole image such as merge and split method, and comparison of two frames. Thus, they take long computing time due to the use of a whole image. Therefore, this paper suggests the faster method of extracting a text region without processing a whole image. The proposed method uses line sampling methods, FFT and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 92% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image, and fast skipping of the images that do not contain a text.

  • PDF

Development of Video Image Detection System based on Tripwire and Vehicle Tracking Technologies focusing performance analysis with Autoscope (Tripwire 및 Tracking 기반의 영상검지시스템 개발 (Autoscope와의 성능비교를 중심으로))

  • Oh, Ju-Taek;Min, Joon-Young;Kim, Seung-Woo;Hur, Byung-Do;Kim, Myung-Soeb
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.177-186
    • /
    • 2008
  • Video Image Detection System can be used for various traffic managements including traffic operation and traffic safety. Video Image Detection Technique can be divide by Tripwire System and Tracking System. Autoscope, which is widely used in the market, utilizes the Tripwire System. In this study, we developed an individual vehicle tracking system that can collect microscopic traffic information and also developed another image detection technology under the Tripwire System. To prove the accuracy and reliability of the newly developed systems, we compared the traffic data of the systems with those generated by Autoscope. The results showed that 0.35% of errors compared with the real traffic counts and 1.78% of errors with Autoscope. Performance comparisons on speed from the two systems showed the maximum errors of 1.77% with Autoscope, which confirms the usefulness of the newly developed systems.

Sub-Frame Analysis-based Object Detection for Real-Time Video Surveillance

  • Jang, Bum-Suk;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • We introduce a vision-based object detection method for real-time video surveillance system in low-end edge computing environments. Recently, the accuracy of object detection has been improved due to the performance of approaches based on deep learning algorithm such as Region Convolutional Neural Network(R-CNN) which has two stage for inferencing. On the other hand, one stage detection algorithms such as single-shot detection (SSD) and you only look once (YOLO) have been developed at the expense of some accuracy and can be used for real-time systems. However, high-performance hardware such as General-Purpose computing on Graphics Processing Unit(GPGPU) is required to still achieve excellent object detection performance and speed. To address hardware requirement that is burdensome to low-end edge computing environments, We propose sub-frame analysis method for the object detection. In specific, We divide a whole image frame into smaller ones then inference them on Convolutional Neural Network (CNN) based image detection network, which is much faster than conventional network designed forfull frame image. We reduced its computationalrequirementsignificantly without losing throughput and object detection accuracy with the proposed method.

GeoVideo: A First Step to MediaGIS

  • Kim, Kyong-Ho;Kim, Sung-Soo;Lee, Sung-Ho;Kim, Kyoung-Ok;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.827-831
    • /
    • 2002
  • MediaGIS is a concept of tightly integrated multimedia with spatial information. VideoGIS is an example of MediaGIS focused on the interaction or interaction of video and spatial information. Our suggested GeoVideo, a new concept of VideoGIS has its key feature in interactiveness. In GeoVideo, the geographic tasks such as browsing, searching, querying, spatial analysis can be performed based on video itself. GeoVideo can have the meaning of paradigm shift from artificial, static, abstracted and graphical paradigm to natural, dynamic, real, and image-based paradigm. We discuss about the integration of video and geography and also suggest the GeoVideo system design. Several considerations on expanding the functionalities of GeoVideo are explained for the future works.

  • PDF

A Technical Analysis on Deep Learning based Image and Video Compression (딥 러닝 기반의 이미지와 비디오 압축 기술 분석)

  • Cho, Seunghyun;Kim, Younhee;Lim, Woong;Kim, Hui Yong;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.383-394
    • /
    • 2018
  • In this paper, we investigate image and video compression techniques based on deep learning which are actively studied recently. The deep learning based image compression technique inputs an image to be compressed in the deep neural network and extracts the latent vector recurrently or all at once and encodes it. In order to increase the image compression efficiency, the neural network is learned so that the encoded latent vector can be expressed with fewer bits while the quality of the reconstructed image is enhanced. These techniques can produce images of superior quality, especially at low bit rates compared to conventional image compression techniques. On the other hand, deep learning based video compression technology takes an approach to improve performance of the coding tools employed for existing video codecs rather than directly input and process the video to be compressed. The deep neural network technologies introduced in this paper replace the in-loop filter of the latest video codec or are used as an additional post-processing filter to improve the compression efficiency by improving the quality of the reconstructed image. Likewise, deep neural network techniques applied to intra prediction and encoding are used together with the existing intra prediction tool to improve the compression efficiency by increasing the prediction accuracy or adding a new intra coding process.

A Study on the Performance Analysis of Content-based Image & Video Retrieval Systems (내용기반 이미지 및 비디오 검색 시스템 성능분석에 관한 연구)

  • Kim, Seong-Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.15 no.2
    • /
    • pp.97-115
    • /
    • 2004
  • The paper examined the concepts and features of content-based Image and Video retrieval systems. It then analyzed the retrieval performance of on five content_based retrieval systems in terms of usability and retrieval features. The results showed that the combination of content_based retrieval techniques and meta-data based retrieval will be able to improve the retrieval effectiveness.

  • PDF

The Analysis of Digital Watermarking for MPEG-21 Digital Item Adaptation (디지털 영상 워터마킹에 대한 MPEG-21 DIA의 영향 분석)

  • Bae, Tae Meon;Kang, Seok Jun;Ro, Yong Man;Ine, So Ran
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.139-142
    • /
    • 2004
  • 본 논문에서는 MPEG-21 Digital Item Adaptation(DIA)에 의한 워터마크 신호의 영향을 실험하고 분석한다. MPEG-21 DIA에서는 다양한 소비환경에 맞게 멀티미디어 컨텐츠를 변할 수 있는 기능들을 제공하고 있다. 그러나 컨텐츠 변환기능들은 저작권 보호를 위해 컨텐츠에 삽입된 워터마크신호를 홰손시킬 수 있으므로, DIA 환경에서 워터마킹기술을 사용하기 위해서는 워터마킹기술에 대한 DIA의 영향을 분석할 필요가 있다. 본 논문에서는 일반적으로 널리 알려진 대표적인 워터마킹기술을 이용하여 MPEG-21 DIA에서 정의하고 있는 각각의 적응변환기능에 대한 워터마크의 강인성을 실험하여, 그 결과를 바탕으로 DIA 환경에서 워터마킹기술을 적용할 때 필요한 요구사항을 분석하였다.

  • PDF

Content-Based Image Retrieval Algorithm Using HAQ Algorithm and Moment-Based Feature (HAQ 알고리즘과 Moment 기반 특징을 이용한 내용 기반 영상 검색 알고리즘)

  • 김대일;강대성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.113-120
    • /
    • 2004
  • In this paper, we propose an efficient feature extraction and image retrieval algorithm for content-based retrieval method. First, we extract the object using Gaussian edge detector for input image which is key frames of MPEG video and extract the object features that are location feature, distributed dimension feature and invariant moments feature. Next, we extract the characteristic color feature using the proposed HAQ(Histogram Analysis md Quantization) algorithm. Finally, we implement an retrieval of four features in sequence with the proposed matching method for query image which is a shot frame except the key frames of MPEG video. The purpose of this paper is to propose the novel content-based image retrieval algerian which retrieves the key frame in the shot boundary of MPEG video belonging to the scene requested by user. The experimental results show an efficient retrieval for 836 sample images in 10 music videos using the proposed algorithm.

Abnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis (지능형 비디오 분석을 위한 적응적 배경 생성 기반의 이상행위 검출)

  • Lee, Seoung-Won;Kim, Tae-Kyung;Yoo, Jang-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2011
  • Intelligent video analysis systems require techniques which can predict accidents and provide alarms to the monitoring personnel. In this paper, we present an abnormal behavior analysis technique based on adaptive background generation. More specifically, abnormal behaviors include fence climbing, abandoned objects, fainting persons, and loitering persons. The proposed video analysis system consists of (i) background generation and (ii) abnormal behavior analysis modules. For robust background generation, the proposed system updates static regions by detecting motion changes at each frame. In addition, noise and shadow removal steps are also were added to improve the accuracy of the object detection. The abnormal behavior analysis module extracts object information, such as centroid, silhouette, size, and trajectory. As the result of the behavior analysis function objects' behavior is configured and analyzed based on the a priori specified scenarios, such as fence climbing, abandoning objects, fainting, and loitering. In the experimental results, the proposed system was able to detect the moving object and analyze the abnormal behavior in complex environments.

Application of Mexican Hat Function to Wave Profile Detection (파형 분석을 위한 멕시코 모자 함수 응용)

  • 이희성;권순홍;이태일
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.32-36
    • /
    • 2002
  • This paper presents the results of wave profile detection from video image using the Mexican hat function. The Mexican hat function has been extensively used in the field of signal processing to detect discontinuity in the images. The analysis was done on the numerical image and video images of waves that were taken in the small wave flume. The results show that the Mexican hat function is an excellent tool for wave profile detection.