• Title/Summary/Keyword: Video Clustering

Search Result 125, Processing Time 0.023 seconds

A Novel Video Image Text Detection Method

  • Zhou, Lin;Ping, Xijian;Gao, Haolin;Xu, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1140-1152
    • /
    • 2012
  • A novel and universal method of video image text detection is proposed. A coarse-to-fine text detection method is implemented. Firstly, the spectral clustering (SC) method is adopted to coarsely detect text regions based on the stationary wavelet transform (SWT). In order to make full use of the information, multi-parameters kernel function which combining the features similarity information and spatial adjacency information is employed in the SC method. Secondly, 28 dimension classifying features are proposed and support vector machine (SVM) is implemented to classify text regions with non-text regions. Experimental results on video images show the encouraging performance of the proposed algorithm and classifying features.

Recovery of Missing Motion Vectors Using Modified ALA Clustering Algorithm (수정된 ALA 클러스터링 알고리즘을 이용한 손실된 움직임 벡터 복원 방법)

  • Son, Nam-Rye;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.755-760
    • /
    • 2005
  • To transmit a video bit stream over low bandwith, such as mobile, channels, encoding algorithms for high bit rate like H.263+ are used. In transmitting video bit-streams, packet losses cause severe degradation in image quality. This paper proposes a new algorithm for the recovery of missing or erroneous motion vectors when H.263+ bit-stream is transmitted. Considering that the missing or erroneous motion vectors are closely related with those of neighboring blocks, this paper proposes a temporal-spatial error concealment algorithm. The proposed approach is that missing or erroneous Motion Vectors(MVs) are recovered by clustering the movements of neighboring blocks by their homogeneity. MVs of neighboring blocks we clustered according to ALA(Average Linkage Algorithm) clustering and a representative value for each cluster is determined to obtain the candidate MV set. By computing the distortion of the candidates, a MV with the minimum distortion is selected. Experimental results show that the proposed algorithm exhibits better performance in subjective and objective evaluation than existing methods.

Role Grades Classification and Community Clustering at Character-net (Character-net에서 배역비중의 분류와 커뮤니티 클러스터링)

  • Park, Seung-Bo;Jo, Geun-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.169-178
    • /
    • 2009
  • There are various approaches that retrieve information from video. However, previous approaches have considered just object information and relationship between objects without story information to retrieve contents. To retrieve exact information at video, we need analyzing approach based on characters and community since these are body of story proceeding. Therefore, this paper describes video information retrieval methodology based on character information. Characters progress story to form relationship through conversations. We can analyze the relationship between characters in a story with the methods that classifies role grades and clusters communities of characters. In this paper, for these, we propose the Character-net and describe how to classify role grades and cluster communities at Character-net. And we show this method to be efficient.

Video Index Generation and Search using Trie Structure (Trie 구조를 이용한 비디오 인덱스 생성 및 검색)

  • 현기호;김정엽;박상현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.610-617
    • /
    • 2003
  • Similarity matching in video database is of growing importance in many new applications such as video clustering and digital video libraries. In order to provide efficient access to relevant data in large databases, there have been many research efforts in video indexing with diverse spatial and temporal features. however, most of the previous works relied on sequential matching methods or memory-based inverted file techniques, thus making them unsuitable for a large volume of video databases. In order to resolve this problem, this paper proposes an effective and scalable indexing technique using a trie, originally proposed for string matching, as an index structure. For building an index, we convert each frame into a symbol sequence using a window order heuristic and build a disk-resident trie from a set of symbol sequences. For query processing, we perform a depth-first search on the trie and execute a temporal segmentation. To verify the superiority of our approach, we perform several experiments with real and synthetic data sets. The results reveal that our approach consistently outperforms the sequential scan method, and the performance gain is maintained even with a large volume of video databases.

Modeling and Classification of MPEG VBR Video Data using Gradient-based Fuzzy c_means with Divergence Measure (분산 기반의 Gradient Based Fuzzy c-means 에 의한 MPEG VBR 비디오 데이터의 모델링과 분류)

  • 박동철;김봉주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.931-936
    • /
    • 2004
  • GBFCM(DM), Gradient-based Fuzzy c-means with Divergence Measure, for efficient clustering of GPDF(Gaussian Probability Density Function) in MPEG VBR video data modeling is proposed in this paper. The proposed GBFCM(DM) is based on GBFCM( Gradient-based Fuzzy c-means) with the Divergence for its distance measure. In this paper, sets of real-time MPEG VBR Video traffic data are considered. Each of 12 frames MPEG VBR Video data are first transformed to 12-dimensional data for modeling and the transformed 12-dimensional data are Pass through the proposed GBFCM(DM) for classification. The GBFCM(DM) is compared with conventional FCM and GBFCM algorithms. The results show that the GBFCM(DM) gives 5∼15% improvement in False Alarm Rate over conventional algorithms such as FCM and GBFCM.

Design and Performance Analysis of Signature-Based Hybrid Spill-Tree for Indexing High Dimensional Vector Data (고차원 벡터 데이터 색인을 위한 시그니쳐-기반 Hybrid Spill-Tree의 설계 및 성능평가)

  • Lee, Hyun-Jo;Hong, Seung-Tae;Na, So-Ra;Jang, You-Jin;Chang, Jae-Woo;Shim, Choon-Bo
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.173-189
    • /
    • 2009
  • Recently, video data has attracted many interest. That is the reason why efficient indexing schemes are required to support the content-based retrieval of video data. But most indexing schemes are not suitable for indexing a high-dimensional data except Hybrid Spill-Tree. In this paper, we propose an efficient high-dimensional indexing scheme to support the content-based retrieval of video data. For this, we extend Hybrid Spill-Tree by using a newly designed clustering technique and by adopting a signature method. Finally, we show that proposed signature-based high dimensional indexing scheme achieves better retrieval performance than existing M-Tree and Hybrid Spill-Tree.

  • PDF

Design and Implementation of a Clip-Based Video Retrieval System Supporting Internet Services (인터넷 서비스를 지원하는 클립 기반 비디오 검색 시스템의 설계 및 구현)

  • 양명섭;이윤채
    • Journal of Internet Computing and Services
    • /
    • v.2 no.1
    • /
    • pp.49-61
    • /
    • 2001
  • Internet has been becoming widely popular and making rapid progress and network technologies is showing extension in data transmission speeds. Rapid and convenient multimedia services supplied with high quality and high speed are being needed, This paper treats of the design and implement method of clip-based video retrieval system on the world-wide-web environments. The implemented system consists of the content-based indexing system supporting convenient services for video contents providers and the web-based retrieval system in order to make it easy and various information retrieval for users on the world-wide-web. Three important methods were used in the content-based indexing system. Key frame extracting method by dividing video data, clip file creation method by clustering related information and video database build method by using clip unit, In web-based retrieval system, retrieval method by using a key word, two dimension browsing method of key frame and real-time display method of the clip were used. As a result. the proposed methodologies showed a usefulness of video content providing. and provided an easy method for searching intented video content.

  • PDF

Recovery Method of missing Motion Vector using Cluster (클러스터를 이용한 손실된 움직임 벡터 복원 방법)

  • 손남례;이귀상
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2371-2374
    • /
    • 2003
  • In transmitting compressed video bit-stream over Internet, packet loss causes error propagation in both spatial and temporal domain, which in turn leads to severe degradation in image qualify In this paper, a new approach for the recovery of lost or erroneous Motion Vector(MV)s by clustering the movements of neighboring blocks by their homogeneity is proposed. MVs of neighboring blocks are clustered according to ALA(Average Linkage Algorithm) clustering and a representative value for each cluster is determined to obtain the candidate MV set. By computing the distortion of the candidates, a MV with the minimum distortion is selected. Experimental results show that the proposed algorithm exhibits better performance in many cases than existing methods.

  • PDF

Realtime Object Region Detection Robust to Vehicle Headlight (차량의 헤드라이트에 강인한 실시간 객체 영역 검출)

  • Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

News Video Shot Boundary Detection using Singular Value Decomposition and Incremental Clustering (특이값 분해와 점증적 클러스터링을 이용한 뉴스 비디오 샷 경계 탐지)

  • Lee, Han-Sung;Im, Young-Hee;Park, Dai-Hee;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.169-177
    • /
    • 2009
  • In this paper, we propose a new shot boundary detection method which is optimized for news video story parsing. This new news shot boundary detection method was designed to satisfy all the following requirements: 1) minimizing the incorrect data in data set for anchor shot detection by improving the recall ratio 2) detecting abrupt cuts and gradual transitions with one single algorithm so as to divide news video into shots with one scan of data set; 3) classifying shots into static or dynamic, therefore, reducing the search space for the subsequent stage of anchor shot detection. The proposed method, based on singular value decomposition with incremental clustering and mercer kernel, has additional desirable features. Applying singular value decomposition, the noise or trivial variations in the video sequence are removed. Therefore, the separability is improved. Mercer kernel improves the possibility of detection of shots which is not separable in input space by mapping data to high dimensional feature space. The experimental results illustrated the superiority of the proposed method with respect to recall criteria and search space reduction for anchor shot detection.