Abstract
There are various approaches that retrieve information from video. However, previous approaches have considered just object information and relationship between objects without story information to retrieve contents. To retrieve exact information at video, we need analyzing approach based on characters and community since these are body of story proceeding. Therefore, this paper describes video information retrieval methodology based on character information. Characters progress story to form relationship through conversations. We can analyze the relationship between characters in a story with the methods that classifies role grades and clusters communities of characters. In this paper, for these, we propose the Character-net and describe how to classify role grades and cluster communities at Character-net. And we show this method to be efficient.
동영상으로부터 원하는 정보를 검색하려는 다양한 연구들이 있어왔다. 하지만 기존의 연구들은 동영상의 스토리에 대한 고려 없이 특정한사물의 인식이나 사물간의 관계 정보만을 추출하여 검색에 이용하였다. 동영상에서 정확한 정보를 검색하기 위해서는 스토리의 주축이 되는 등장인물과 등장인물의 커뮤니티에 기반을 둔 연구가 반드시 필요하다. 따라서 본 논문은 등장인물에 기반을 둔 동영상 정보검색 방법을 기술한다. 등장인물들은 서로 대화를 통해 관계를 맺으며 스토리를 진행시킨다. 등장인물들 간의 관계는 배역의 비중을 분류하고 등장인물들이 이루는 커뮤니티를 구분하여 스토리에 형성되어 있는 관계를 분석할 수 있다. 이를 위해 본 논문에서 등장인물들의 관계를 묘사할 수 있는 Character-net을 제안하고 Character-net으로부터 등장인물들의 배역의 비중을 분류하고 등장인물들이 이루는 커뮤니티를 클러스터링 하는 방법에 대해 기술하고 실험을 통해 그 효용성을 입증한다.