• Title/Summary/Keyword: Video Clustering

Search Result 125, Processing Time 0.028 seconds

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.

An Efficient Video Clip Matching Algorithm Using the Cauchy Function (커쉬함수를 이용한 효율적인 비디오 클립 정합 알고리즘)

  • Kim Sang-Hyul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.294-300
    • /
    • 2004
  • According to the development of digital media technologies various algorithms for video clip matching have been proposed to match the video sequences efficiently. A large number of video search methods have focused on frame-wise query, whereas a relatively few algorithms have been presented for video clip matching or video shot matching. In this paper, we propose an efficient algorithm to index the video sequences and to retrieve the sequences for video clip query. To improve the accuracy and performance of video sequence matching, we employ the Cauchy function as a similarity measure between histograms of consecutive frames, which yields a high performance compared with conventional measures. The key frames extracted from segmented video shots can be used not only for video shot clustering but also for video sequence matching or browsing, where the key frame is defined by the frame that is significantly different from the previous frames. Experimental results with color video sequences show that the proposed method yields the high matching performance and accuracy with a low computational load compared with conventional algorithms.

  • PDF

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

Visual Semantic Based 3D Video Retrieval System Using HDFS

  • Ranjith Kumar, C.;Suguna, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3806-3825
    • /
    • 2016
  • This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose we intent to hitch on BOVW and Mapreduce in 3D framework. Here, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and produce results .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we fiture the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

Abrupt Shot Change Detection using an Unsupervised Clustering of Multiple Features (클러스터링을 이용한 급격한 장면 전환 검출 기법)

  • Lee, Hun-Cheol;Go, Yun-Ho;Yun, Byeong-Ju;Kim, Seong-Dae;Yu, Sang-Jo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.712-720
    • /
    • 2001
  • In this paper, we propose an efficient method to detect abrupt shot changes in a video sequence using an unsupervised clustering. Conventional clustering-based shot change detection algorithms use multiple features in order to overcome the shortcomings of a single feature. In such methods it is very important to determine the appropriate initial cluster centers well. In this paper we propose a modified k-means clustering algorithm which estimates the initial cluster center adaptively. Experimental results show that the proposed algorithm works well.

  • PDF

Key VOP by Shape in MPEG-4 Compressed Domain (MPEG-4 압축 영역에서 형상을 이용한 키 VOP 선정)

  • 한상진;김용철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.624-633
    • /
    • 2003
  • We propose a novel method of selecting key VOPs from MPEG-4 compressed domain without fully decoding the compressed data. Approximated shapes of VOPs are obtained from the shape coding mode and then VOPs are clustered by shape similarity to generate key VOPs. The proposed method reduces the computation time of shape approximation, compared with Erol's method. Nevertheless, the resulting VOPs have a good summarizing capability of a video sequence. NMHD (normalized mean Hausdorff distance) values are 2-means clustered to generate key VOPs. In the video search, the MHD of a query VOP from key VOPs are computed and the VOP with the lowest distance is returned. Tests on standard MPEG-4 test sequences show that the computational complexity is very low. Recursive clustering proved to be very effective for generating suitable key VOPs.

Collective Interaction Filtering Approach for Detection of Group in Diverse Crowded Scenes

  • Wong, Pei Voon;Mustapha, Norwati;Affendey, Lilly Suriani;Khalid, Fatimah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.912-928
    • /
    • 2019
  • Crowd behavior analysis research has revealed a central role in helping people to find safety hazards or crime optimistic forecast. Thus, it is significant in the future video surveillance systems. Recently, the growing demand for safety monitoring has changed the awareness of video surveillance studies from analysis of individuals behavior to group behavior. Group detection is the process before crowd behavior analysis, which separates scene of individuals in a crowd into respective groups by understanding their complex relations. Most existing studies on group detection are scene-specific. Crowds with various densities, structures, and occlusion of each other are the challenges for group detection in diverse crowded scenes. Therefore, we propose a group detection approach called Collective Interaction Filtering to discover people motion interaction from trajectories. This approach is able to deduce people interaction with the Expectation-Maximization algorithm. The Collective Interaction Filtering approach accurately identifies groups by clustering trajectories in crowds with various densities, structures and occlusion of each other. It also tackles grouping consistency between frames. Experiments on the CUHK Crowd Dataset demonstrate that approach used in this study achieves better than previous methods which leads to latest results.

A Method of Patch Merging for Atlas Construction in 3DoF+ Video Coding

  • Im, Sung-Gyune;Kim, Hyun-Ho;Lee, Gwangsoon;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.259-260
    • /
    • 2019
  • MPEG-I Visual group is actively working on enhancing immersive experiences with up to six degree of freedom (6DoF). In virtual space of 3DoF+, which is defined as an extension of 360 video with limited changes of the view position in a sitting position, looking at the scene from another viewpoint (another position in space) requires rendering additional viewpoints using multiple videos taken at the different locations at the same time. In the MPEG-I Visual workgroup, methods of efficient coding and transmission of 3DoF+ video are being studied, and they released Test Model for Immersive Media (TMIV) recently. This paper presents the enhanced clustering method which can pack the patches into atlas efficiently in TMIV. The experimental results show that the proposed method achieves significant BD-rate reduction in terms of various end-to-end evaluation methods.

  • PDF

Real-Time Apartment Building Detection and Tracking with AdaBoost Procedure and Motion-Adjusted Tracker

  • Hu, Yi;Jang, Dae-Sik;Park, Jeong-Ho;Cho, Seong-Ik;Lee, Chang-Woo
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.338-340
    • /
    • 2008
  • In this letter, we propose a novel approach to detecting and tracking apartment buildings for the development of a video-based navigation system that provides augmented reality representation of guidance information on live video sequences. For this, we propose a building detector and tracker. The detector is based on the AdaBoost classifier followed by hierarchical clustering. The classifier uses modified Haar-like features as the primitives. The tracker is a motion-adjusted tracker based on pyramid implementation of the Lukas-Kanade tracker, which periodically confirms and consistently adjusts the tracking region. Experiments show that the proposed approach yields robust and reliable results and is far superior to conventional approaches.

  • PDF

A Novel Video Image Text Detection Method

  • Zhou, Lin;Ping, Xijian;Gao, Haolin;Xu, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.941-953
    • /
    • 2012
  • A novel and universal method of video image text detection is proposed. A coarse-to-fine text detection method is implemented. Firstly, the spectral clustering (SC) method is adopted to coarsely detect text regions based on the stationary wavelet transform (SWT). In order to make full use of the information, multi-parameters kernel function which combining the features similarity information and spatial adjacency information is employed in the SC method. Secondly, 28 dimension classifying features are proposed and support vector machine (SVM) is implemented to classify text regions with non-text regions. Experimental results on video images show the encouraging performance of the proposed algorithm and classifying features.