In this paper, we propose an efficient method to detect abrupt shot changes in compressed MPEG video data by using reference ratios among video frames. The reference ratios among video frames imply the degree of similarities among adjacent frames by prediction coded type of each frames. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. This paper proposes an efficient shot change detection algorithm by using Fuzzy c-means(FCM) clustering algorithm. The FCM clustering uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.
Recent years, the use of multimedia information is rapidly increasing, and the video media is the most rising one than any others, and this field Integrates all the media into a single data stream. Though the availability of digital video is raised largely, it is very difficult for users to make the effective video access, due to its length and unstructured video format. Thus, the minimal interaction of users and the explicit definition of video structure is a key requirement in the lately developing image and video management systems. This paper defines the terms and hierarchical video structure, and presents the system, which construct the clustering-based video hierarchy, which facilitate users by browsing the summary and do a random access to the video content. Instead of using a single feature and domain-specific thresholds, we use multiple features that have complementary relationship for each other and clustering-based methods that use normalization so as to interact with users minimally. The stage of shot boundary detection extracts multiple features, performs the adaptive filtering process for each features to enhance the performance by eliminating the false factors, and does k-means clustering with two classes. The shot list of a result after the proposed procedure is represented as the video hierarchy by the intelligent unsupervised clustering technique. We experimented the static and the dynamic movie videos that represent characteristics of various video types. In the result of shot boundary detection, we had almost more than 95% good performance, and had also rood result in the video hierarchy.
The Journal of the Korea institute of electronic communication sciences
/
v.5
no.1
/
pp.23-30
/
2010
The H.264/AVC is increasingly used in broadcast video applications such as Internet Protocol television (IPTV), digital multimedia broadcasting (DMB) because of high compression performance. But the H.264/AVC coded video can be delivered to the widespread end-user equipment for MPEG-2 after transcoding between this video standards. This paper suggests a new transcoding algorithm for H.264/AVC to MPEG-2 transcoder that uses motion vector clustering in order to reduce the complexity without loss of video quality. The proposed method is exploiting the motion information gathered during h.264 decoding stage. To reduce the search space for the MPEG-2 motion estimation, the predictive motion vector is selected with a least distortion of the candidated motion vectors. These candidate motion vectors are considering the correlation of direction and distance of motion vectors of variable blocks in H.264/AVC. And then the best predictive motion vector is refined with full-search in ${\pm}2$ pixel search area. Compared with a cascaded decoder-encoder, the proposed transcoder achieves computational complexity savings up to 64% with a similar PSNR at the constant bitrate(CBR).
International Journal of Computer Science & Network Security
/
v.21
no.8
/
pp.87-96
/
2021
The demand for e-learning through video lectures is rapidly increasing due to its diverse advantages over the traditional learning methods. This led to massive volumes of web-based lecture videos. Indexing and retrieval of a lecture video or a lecture video topic has thus proved to be an exceptionally challenging problem. Many techniques listed by literature were either visual or audio based, but not both. Since the effects of both the visual and audio components are equally important for the content-based indexing and retrieval, the current work is focused on both these components. A framework for automatic topic-based indexing and search depending on the innate content of the lecture videos is presented. The text from the slides is extracted using the proposed Merged Bounding Box (MBB) text detector. The audio component text extraction is done using Google Speech Recognition (GSR) technology. This hybrid approach generates the indexing keywords from the merged transcripts of both the video and audio component extractors. The search within the indexed documents is optimized based on the Naïve Bayes (NB) Classification and K-Means Clustering models. This optimized search retrieves results by searching only the relevant document cluster in the predefined categories and not the whole lecture video corpus. The work is carried out on the dataset generated by assigning categories to the lecture video transcripts gathered from e-learning portals. The performance of search is assessed based on the accuracy and time taken. Further the improved accuracy of the proposed indexing technique is compared with the accepted chain indexing technique.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.3
/
pp.1040-1057
/
2014
In this paper, a new bit rate estimation scheme is proposed to determine the bit rate for each subclass in an MPEG-2 TS to H.264/AVC transcoder after dividing an input MPEG-2 TS sequence into several subclasses. Video format transcoding in conventional IPTV and Smart TV services is a time-consuming process since the input sequence should be fully transcoded several times with different bit-rates to decide the bit-rate suitable for a service. The proposed scheme can automatically decide the bit-rate for the transcoded video sequence in those services which can be stored on a video streaming server as small as possible without losing any subject quality loss. In the proposed scheme, an input sequence to the transcoder is sub-classified by hierarchical clustering using a parameter value extracted from each frame. The candidate frames of each subclass are used to estimate the bit rate using a statistical analysis and a mathematical model. Experimental results show that the proposed scheme reduces the bit rate by, on an average approximately 52% in low-complexity video and 6% in high-complexity video with negligible degradation in subjective quality.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.3
/
pp.361-367
/
2021
Information search in video streaming services such as YouTube is replacing traditional information search services. To find desired detailed information in such a video, users should repeatedly navigate several points in the video, resulting in a waste of time and network traffic. In this paper, we propose a method to assist users in searching for information in a video by using DBSCAN clustering and LSTM. Our LSTM model is trained with a dataset that consists of user search sequences and their final target points categorized by DBSCAN clustering algorithm. Then, our proposed method utilizes the trained model to suggest an expected category for the user's desired target point based on a partial search sequence that can be collected at the beginning of the search. Our experiment results show that the proposed method successfully finds user destination points with 98% accuracy and 7s of the time difference by average.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.40
no.1
/
pp.10-19
/
2003
Caption information in news videos can be useful for video indexing and retrieval since it usually suggests or implies the contents of the video very well. In this paper, a new algorithm for extracting and recognizing characters from news video is proposed, without a priori knowledge such as font type, color, size of character. In the process of text region extraction, in order to improve the recognition rate for videos with complex background at low resolution, continuous frames with identical text regions are automatically detected to compose an average frame. The image of the averaged frame is projected to horizontal and vertical direction, and we apply region filling to remove backgrounds to produce the character. Then, K-means color clustering is applied to remove remaining backgrounds to produce the final text image. In the process of character recognition, simple features such as white run and zero-one transition from the center, are extracted from unknown characters. These feature are compared with the pre-composed character feature set to recognize the characters. Experimental results tested on various news videos show that the proposed method is superior in terms of caption extraction ability and character recognition rate.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.4
s.310
/
pp.74-86
/
2006
This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.
The continuous data such as video streams and voice analog signals can be modeled as multidimensional data sequences(MDS's) in the feature space, In this paper, we investigate the clustering technique for multidimensional data sequence, Each sequence is represented by a small number by hyper rectangular clusters for subsequent storage and similarity search processing. We present a linear clustering algorithm that guarantees a predefined level of clustering quality and show its effectiveness via experiments on various video data sets.
There is a rapid increase in the use of digital video information in recent years. Especially, user requires the environment which retrieves video from passive access to active access, to be more efficiently. we need to implement video retrieval system including video parsing, clustering, and browsing to satisfy user's requirement. In this paper, we first divide video sequence to shots which are primary unit for automatic indexing, using a hybrid method with mixing histogram method and pixel-based method. After the shot boundaries are detected, corresponding key frames can be extracted. Key frames are very important portion because they help to understand overall contents of video. In this paper, we first analyze camera operation in video and then select different number of key frames depend on shot complexity. At last, we compose panorama images from shots which are containing panning or tilting in order to provide more useful and understandable browsing environment to users.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.