• Title/Summary/Keyword: Video Clustering

Search Result 125, Processing Time 0.031 seconds

Efficient Shot Change Detection Using Clustering Method on MPEG Video Frames (MPEG 비디오 프레임에서 FCM 클러스터링 기법을 이용한 효과적인 장면 전환 검출)

  • Lim, Seong-Jae;Lee, Bae-Ho
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.751-754
    • /
    • 2000
  • In this paper, we propose an efficient method to detect abrupt shot changes in compressed MPEG video data by using reference ratios among video frames. The reference ratios among video frames imply the degree of similarities among adjacent frames by prediction coded type of each frames. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. This paper proposes an efficient shot change detection algorithm by using Fuzzy c-means(FCM) clustering algorithm. The FCM clustering uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.

  • PDF

Clustering-based Hierarchical Scene Structure Construction for Movie Videos (영화 비디오를 위한 클러스터링 기반의 계층적 장면 구조 구축)

  • Choi, Ick-Won;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.529-542
    • /
    • 2000
  • Recent years, the use of multimedia information is rapidly increasing, and the video media is the most rising one than any others, and this field Integrates all the media into a single data stream. Though the availability of digital video is raised largely, it is very difficult for users to make the effective video access, due to its length and unstructured video format. Thus, the minimal interaction of users and the explicit definition of video structure is a key requirement in the lately developing image and video management systems. This paper defines the terms and hierarchical video structure, and presents the system, which construct the clustering-based video hierarchy, which facilitate users by browsing the summary and do a random access to the video content. Instead of using a single feature and domain-specific thresholds, we use multiple features that have complementary relationship for each other and clustering-based methods that use normalization so as to interact with users minimally. The stage of shot boundary detection extracts multiple features, performs the adaptive filtering process for each features to enhance the performance by eliminating the false factors, and does k-means clustering with two classes. The shot list of a result after the proposed procedure is represented as the video hierarchy by the intelligent unsupervised clustering technique. We experimented the static and the dynamic movie videos that represent characteristics of various video types. In the result of shot boundary detection, we had almost more than 95% good performance, and had also rood result in the video hierarchy.

  • PDF

H.264/AVC to MPEG-2 Video Transcoding by using Motion Vector Clustering (움직임벡터 군집화를 이용한 H.264/AVC에서 MPEG-2로의 비디오 트랜스코딩)

  • Shin, Yoon-Jeong;Son, Nam-Rye;Nguyen, Dinh Toan;Lee, Guee-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.1
    • /
    • pp.23-30
    • /
    • 2010
  • The H.264/AVC is increasingly used in broadcast video applications such as Internet Protocol television (IPTV), digital multimedia broadcasting (DMB) because of high compression performance. But the H.264/AVC coded video can be delivered to the widespread end-user equipment for MPEG-2 after transcoding between this video standards. This paper suggests a new transcoding algorithm for H.264/AVC to MPEG-2 transcoder that uses motion vector clustering in order to reduce the complexity without loss of video quality. The proposed method is exploiting the motion information gathered during h.264 decoding stage. To reduce the search space for the MPEG-2 motion estimation, the predictive motion vector is selected with a least distortion of the candidated motion vectors. These candidate motion vectors are considering the correlation of direction and distance of motion vectors of variable blocks in H.264/AVC. And then the best predictive motion vector is refined with full-search in ${\pm}2$ pixel search area. Compared with a cascaded decoder-encoder, the proposed transcoder achieves computational complexity savings up to 64% with a similar PSNR at the constant bitrate(CBR).

An Optimized e-Lecture Video Search and Indexing framework

  • Medida, Lakshmi Haritha;Ramani, Kasarapu
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.87-96
    • /
    • 2021
  • The demand for e-learning through video lectures is rapidly increasing due to its diverse advantages over the traditional learning methods. This led to massive volumes of web-based lecture videos. Indexing and retrieval of a lecture video or a lecture video topic has thus proved to be an exceptionally challenging problem. Many techniques listed by literature were either visual or audio based, but not both. Since the effects of both the visual and audio components are equally important for the content-based indexing and retrieval, the current work is focused on both these components. A framework for automatic topic-based indexing and search depending on the innate content of the lecture videos is presented. The text from the slides is extracted using the proposed Merged Bounding Box (MBB) text detector. The audio component text extraction is done using Google Speech Recognition (GSR) technology. This hybrid approach generates the indexing keywords from the merged transcripts of both the video and audio component extractors. The search within the indexed documents is optimized based on the Naïve Bayes (NB) Classification and K-Means Clustering models. This optimized search retrieves results by searching only the relevant document cluster in the predefined categories and not the whole lecture video corpus. The work is carried out on the dataset generated by assigning categories to the lecture video transcripts gathered from e-learning portals. The performance of search is assessed based on the accuracy and time taken. Further the improved accuracy of the proposed indexing technique is compared with the accepted chain indexing technique.

Video Content-Based Bit Rate Estimation Scheme for Transcoding in IPTV Services

  • Cho, Hye Jeong;Sohn, Chae-Bong;Oh, Seoung-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.1040-1057
    • /
    • 2014
  • In this paper, a new bit rate estimation scheme is proposed to determine the bit rate for each subclass in an MPEG-2 TS to H.264/AVC transcoder after dividing an input MPEG-2 TS sequence into several subclasses. Video format transcoding in conventional IPTV and Smart TV services is a time-consuming process since the input sequence should be fully transcoded several times with different bit-rates to decide the bit-rate suitable for a service. The proposed scheme can automatically decide the bit-rate for the transcoded video sequence in those services which can be stored on a video streaming server as small as possible without losing any subject quality loss. In the proposed scheme, an input sequence to the transcoder is sub-classified by hierarchical clustering using a parameter value extracted from each frame. The candidate frames of each subclass are used to estimate the bit rate using a statistical analysis and a mathematical model. Experimental results show that the proposed scheme reduces the bit rate by, on an average approximately 52% in low-complexity video and 6% in high-complexity video with negligible degradation in subjective quality.

Machine Learning Assisted Information Search in Streaming Video (기계학습을 이용한 동영상 서비스의 검색 편의성 향상)

  • Lim, Yeon-sup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.361-367
    • /
    • 2021
  • Information search in video streaming services such as YouTube is replacing traditional information search services. To find desired detailed information in such a video, users should repeatedly navigate several points in the video, resulting in a waste of time and network traffic. In this paper, we propose a method to assist users in searching for information in a video by using DBSCAN clustering and LSTM. Our LSTM model is trained with a dataset that consists of user search sequences and their final target points categorized by DBSCAN clustering algorithm. Then, our proposed method utilizes the trained model to suggest an expected category for the user's desired target point based on a partial search sequence that can be collected at the beginning of the search. Our experiment results show that the proposed method successfully finds user destination points with 98% accuracy and 7s of the time difference by average.

Study on News Video Character Extraction and Recognition (뉴스 비디오 자막 추출 및 인식 기법에 관한 연구)

  • 김종열;김성섭;문영식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.10-19
    • /
    • 2003
  • Caption information in news videos can be useful for video indexing and retrieval since it usually suggests or implies the contents of the video very well. In this paper, a new algorithm for extracting and recognizing characters from news video is proposed, without a priori knowledge such as font type, color, size of character. In the process of text region extraction, in order to improve the recognition rate for videos with complex background at low resolution, continuous frames with identical text regions are automatically detected to compose an average frame. The image of the averaged frame is projected to horizontal and vertical direction, and we apply region filling to remove backgrounds to produce the character. Then, K-means color clustering is applied to remove remaining backgrounds to produce the final text image. In the process of character recognition, simple features such as white run and zero-one transition from the center, are extracted from unknown characters. These feature are compared with the pre-composed character feature set to recognize the characters. Experimental results tested on various news videos show that the proposed method is superior in terms of caption extraction ability and character recognition rate.

Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering (SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할)

  • Jung Chan-Ho;Kim Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.74-86
    • /
    • 2006
  • This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.

Clustering Technique for Sequence Data Sets in Multidimensional Data Space (다차원 데이타 공간에서 시뭔스 데이타 세트를 위한 클러스터링 기법)

  • Lee, Seok-Lyong;LiIm, Tong-Hyeok;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.655-664
    • /
    • 2001
  • The continuous data such as video streams and voice analog signals can be modeled as multidimensional data sequences(MDS's) in the feature space, In this paper, we investigate the clustering technique for multidimensional data sequence, Each sequence is represented by a small number by hyper rectangular clusters for subsequent storage and similarity search processing. We present a linear clustering algorithm that guarantees a predefined level of clustering quality and show its effectiveness via experiments on various video data sets.

  • PDF

Video Indexing for Efficient Browsing Environment (효율적인 브라우징 환경을 위한 비디오 색인)

  • Ko, Byong-Chul;Lee, Hae-Sung;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.74-83
    • /
    • 2000
  • There is a rapid increase in the use of digital video information in recent years. Especially, user requires the environment which retrieves video from passive access to active access, to be more efficiently. we need to implement video retrieval system including video parsing, clustering, and browsing to satisfy user's requirement. In this paper, we first divide video sequence to shots which are primary unit for automatic indexing, using a hybrid method with mixing histogram method and pixel-based method. After the shot boundaries are detected, corresponding key frames can be extracted. Key frames are very important portion because they help to understand overall contents of video. In this paper, we first analyze camera operation in video and then select different number of key frames depend on shot complexity. At last, we compose panorama images from shots which are containing panning or tilting in order to provide more useful and understandable browsing environment to users.

  • PDF