• Title/Summary/Keyword: Vibrational energy transfer

Search Result 47, Processing Time 0.022 seconds

Wave Transmission Analysis of Semi-infinite Mindlin Plates Coupled at an Arbitrary Angle (임의의 각으로 연성된 반무한 Mindlin 판의 파동전달해석)

  • Park, Young-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.999-1006
    • /
    • 2014
  • Mindlin plate theory includes the shear deformation and rotatory inertia effects which cannot be negligible as exciting frequency increases. The statistical methods such as energy flow analysis(EFA) and statistical energy analysis(SEA) are very useful for estimation of structure-borne sound of various built-up structures. For the reliable vibrational analysis of built-up structures at high frequencies, the energy transfer relationship between out-of-plane waves and in-plane waves exist in Mindlin plates coupled at arbitrary angles must be derived. In this paper, the new wave transmission analysis is successfully performed for various energy analyses of Mindlin plates coupled at arbitrary angles.

Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.61-80
    • /
    • 2002
  • Wind tunnel aeroelastic model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building were conducted using a three-degree-of-freedom base hinged aeroelastic(BHA) model. Experimental investigation into the effects of coupled translational-torsional motion, cross-wind/torsional frequency ratio and eccentricity between centre of mass and centre of stiffness on the wind-induced response characteristics and wind excitation mechanisms was carried out. The wind tunnel test results highlight the significant effects of coupled translational-torsional motion, and eccentricity between centre of mass and centre of stiffness, on both the normalised along-wind and cross-wind acceleration responses for reduced wind velocities ranging from 4 to 20. Coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness also have significant impacts on the amplitude-dependent effect caused by the vortex resonant process, and the transfer of vibrational energy between the along-wind and cross-wind directions. These resulted in either an increase or decrease of each response component, in particular at reduced wind velocities close to a critical value of 10. In addition, the contribution of vibrational energy from the torsional motion to the cross-wind response of the building model can be greatly amplified by the effect of resonance between the vortex shedding frequency and the torsional natural frequency of the building model.

Intermolecular Interaction and Molecular Energy Transfer ; Vibrational Relaxation of Highly Excited HF and DF (문자간 상호작용과 에너지이동에 대한 이론적 연구 ; 높은 振動準位로 들뜬 HF 및 DF 의 振動緩和)

  • Chang Soon Lee;Min Joo Lee;Yoo Hang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.592-598
    • /
    • 1985
  • The total vibrational deexcitation rate constants $k_{v,v-1}$ of HF(v = 5-7) by HF(${\mu}$ = 0) and DF(${\mu}$ = 9-12) by DF(${\mu}$= 0) including both the vibration to vibration (V ${\to}$ V) and vibration to rotation and translation (V ${\to}$ R, T) energy transfer channels have been calculated semiclas-sically using a simplified collision model. The calculated results are in reasonably good agreement with those obtained by experimental and other theoretical studies. The rate constants increase with increasing temperature and also with increasing v. They also show that the relaxation of the highly excited HF and DF occurs predominantly via the V ${\to}$ R, T path at low temperature. The effectiveness of the V ${\to}$ V path, however, increases as the temperature is raised.

  • PDF

3D Generalized Langevin Equation (GLE) Approach to Gas-Surface Energy Transfer : Model H + H → $H_2/Si(100)-(2*1)$

  • Youxiang Zhang;Park, Seung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1095-1100
    • /
    • 2000
  • we have proposed a three-dimensional GLE approach to gas-surface reactive scattering, model H + H $${\rightarrow}$H_2/Si(100)-(2$ ${\times}$1) system, and the implementation of 3D GLE method on the hydrogen on silicon surface has been presented. The formalism and algori thm of the 3D GLE are worked properly in the reactive scattering system. The calculated normal mode frequencies of surface vibrations were almost identical to previous harmonic slab calculations. The reaction probabilities were calculated for two energies. The calculations show that a very large amount of energy is transferred in surface in low energy scattering. Three different types of reaction mechanisms has been observed, which can not be shown in flat and rigid surface models. Further work on the reaction mechanisms and calculations of the vibrational and rotation distributions of products is in progress. The results will be reported elsewhere soon.

Intramolecular Energy Flow and Bond Dissociation in the Collision between Vibrationally Excited Toluene and HF

  • Ree, Jong-baik;Kim, Sung-Hee;Lee, Taeck-Hong;Kim, Yu-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.495-502
    • /
    • 2006
  • Intramolecular energy flow and C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited toluene in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited toluene upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm ^{-1}$. Above the energy content of 45,000 $cm ^{-1}$, however, energy loss decreases. Furthermore, in the highly excited toluene, toluene gains energy from incident HF. The temperature dependence of energy loss is negligible between 200 and 400 K. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF transferring relatively large amount of its translational energy (>> $k_BT$) in a single step, whereas energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content $E_T$ of toluene is sufficiently high, either C-H bond can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the intermolecular energy flow from the direct collision between the ring C-H and HF but the intramolecular flow of energy from the methyl group to the ring C-H stretch. The C-$H_{ring}$${\cdot}{\cdot}{\cdot}$HF interaction is not important in transferring energy and in turn bond dissociation.

Theoretical Studies of Hydrogen Bond Interactions in Fluoroacetic Acid Dimer

  • Chermahini, Alireza Najafi;Mahdavian, Mohsen;Teimouri, Abbas
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.941-948
    • /
    • 2010
  • Ab initio and density functional theory methods have been employed to study all theoretically possible conformers of fluoroacetic acid. Molecular geometries and energetic of cis and trans monomers and cis dimers in gaseous phase have been obtained using HF, B3LYP and MP2 levels of theory, implementing 6-311++G(d,p) basis set. It was found that cis rotamers are more stable. In addition, it was found that in comparison with acetic acid the strength of hydrogen bonding in fluoroacetic acid decreased. The infrared spectrum frequencies and the vibrational frequency shifts are reported. Natural population and atom in molecule analysis performed to predict electrostatic interactions in the cyclic H-bonded complexes and charges. The proton transfer reaction is studied and activation energy is compared with acetic acid proton transfer reaction.

Photophysical Behaviors of Biphenylcarboxylic Acids in Various Solvents; Excited-State Geometry Change and Intramolecular Charge Transfer

  • Yoon Minjoong;Cho Dae Won;Lee Jae Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.613-620
    • /
    • 1992
  • The solvent-dependent photophysical properties of 2-biphenylcarboxylic acid (2BPCA) and 4-biphenylcarboxylic acid(4BPCA), which have a pre-twisted conformation in the ground state, have been investigated. The fluorescence spectra of 4BPCA show vibrational structure with a non-mirror image to the absorption spectra in nonpolar solvent while those of 2BPCA show no structure even in nonpolar solvents. As the solvent polarity increases, the fluorescence spectra become diffuse and broad with a strong red shift resulting in the large Stokes shift. The large fluorescence Stokes shift of BPCA's in polar solvent is also partially due to an intramolecular charge transfer (ICT) interaction in the excited state, as demonstrated by the large dipole moment in the excited state (7.6-10.6 D). The fluorescence decay behaviors of BPCA's (decay-times and their pre-exponential factors) also depend on solvent polarity in agreement with the solvent-dependent properties of the steady-state fluorecence. The data have been discussed in terms of change in the excited-state potential energy surface with respect to change of the dihedral angle of biphenyl moiety.

Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

  • Lee, Weon-Gyu;Kelly, Aaron;Rhee, Young-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.933-940
    • /
    • 2012
  • Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic lightharvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density.

Phase Shifts of Bound State Waves Scattered at Classical Turning Points: Morse Potential

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1717-1722
    • /
    • 2005
  • The analytical transfer matrix method suggests a new quantization condition for calculating bound state eigenenergies exactly. In the quantization condition, the phase shifts of bound state wave functions scattered at classical turning points are explicitly introduced. We calculate the phase shifts of eigenfunctions of the Morse potential with various boundary conditions in order to understand the physical meaning of phase shifts. The Morse potential is known to adequately describe the interaction energy between two atoms and, therefore, it is frequently used to determine the vibrational energy levels of diatomic molecules. The variation of Morse potential eigenenergies influenced upon by changing boundary conditions is also investigated.

A transport model for high-frequency vibrational power flows in coupled heterogeneous structures

  • Savin, Eric
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.53-81
    • /
    • 2008
  • The theory of microlocal analysis of hyperbolic partial differential equations shows that the energy density associated to their high-frequency solutions satisfies transport equations, or radiative transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small) wavelength. The main limitation to the existing developments is the consideration of boundary or interface conditions for the energy and power flow densities. This paper deals with the high-frequency transport regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results may be used in subsequent computations to solve numerically the transport equations for coupled systems, including interface conditions. Applications of this research concern the prediction of the transient response of slender structures impacted by acoustic or mechanical shocks.