• 제목/요약/키워드: Vibrational Power

검색결과 133건 처리시간 0.022초

카메라를 이용한 고압 증기 배관 누설/진동 감시시스템 개발 (Development of Leak and Vibration Monitoring System for High Pressure Steam Pipe by Using a Camera)

  • 전형섭;서장수;채경선;손기성;김세오;이남희
    • 비파괴검사학회지
    • /
    • 제36권6호
    • /
    • pp.496-503
    • /
    • 2016
  • 발전소나 석유화학 플랜트 구조물에 누설이 발생하면 인명 피해 및 경제적인 손실을 초래한다. 이러한 누설은 플랜트 배관의 진동으로 인한 피로파괴나 배관 감육으로 인해 발생한다. 플랜트 배관의 진동을 감시하기 위한 방법으로 주로 가속도센서나 레이저센서가 사용되지만 설치 및 운용의 어려움이 따르고 동시에 광범위 측정 시 비용 증가가 발생하게 된다. 이러한 문제점들을 해결하기 위해 최근 카메라를 이용한 누설 및 진동 변위 측정 방법에 대한 연구가 이루어지고 있다. 카메라를 이용한 누설 및 진동 변위 측정 방법은 설치가 간단하고 원거리 측정 및 넓은 범의의 측정이 가능한 장점을 가지고 있다. 따라서 본 연구에서는 카메라를 이용해 누설 및 진동 변위를 측정할 수 있는 시스템을 개발하였고 실험을 통해 성능을 검증하였다.

Vibrational energy flow in steel box girders: Dominant modes and components, and effective vibration reduction measures

  • Derui Kong;Xun Zhang;Cong Li;Keer Cui
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.347-362
    • /
    • 2024
  • Controlling vibrations and noise in steel box girders is important for reducing noise pollution and avoiding discomfort to residents of dwellings along bridges. The fundamental approach to solving this problem involves first identifying the main path of transmission of the vibration energy and then cutting it off by using targeted measures. However, this requires an investigation of the characteristics of flow of vibration energy in the steel box girder, whereas most studies in the area have focused on analyzing its single-point frequency response and overall vibrations. To solve this problem, this study examines the transmission of vibrations through the segments of a steel box girder when it is subjected to harmonic loads through structural intensity analysis based on standard finite element software and a post-processing code created by the authors. We identified several frequencies that dominated the vibrations of the steel box girder as well as the factors that influenced their emergence. We also assessed the contributions of a variety of vibrational waves to power flow, and the results showed that bending waves were dominant in the top plate and in-plane waves in the vertical plate of the girder. Finally, we analyzed the effects of commonly used stiffened structures and steel-concrete composite structures on the flow of vibration energy in the girder, and verified their positive impacts on energy regionalization. In addition to providing an efficient tool for the relevant analyses, the work here informs research on optimizing steel box girders to reduce vibrations and noise in them.

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.69-84
    • /
    • 2020
  • Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.

심해 라이저의 와류유기 진동해석 (Vortex-Induced Vibration Analysis of Deep-Sea Riser)

  • 박성종;김봉재
    • 한국해양공학회지
    • /
    • 제31권5호
    • /
    • pp.364-370
    • /
    • 2017
  • A numerical model based on the mode superposition method is used to study the vortex-induced vibration response characteristics of a deep-sea riser such as steel catenary riser (SCR). A steel catenary riser can be modeled using a flexible cable with simple supports at both ends. The natural frequency, mode shape and mode curvature of the riser are calculated and the vortex-induced vibration response of the riser is obtained using the equilibrium of the input and output power. The mode superposition method is applied to the vibrational stresses for each mode to calculate the overall riser fatigue life.

500MW급 증기터빈 블레이드-디스크계의 진동특성 분석 (Vibration Characteristic Analysis of 500MW Steam Turbine Blade-Disks)

  • 최홍일;배용채;김희수;이욱륜;이두영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.253-253
    • /
    • 2008
  • The main purpose of this study is to identify the vibrational characteristics for the LP blades of Korean standard fossil power plants. Modal tests for the 6 stage blade with boundary condition in which the root of blades are constrained with the disk were conducted, and FE analysis was also did with the same boundary condition. The steady-stress and modal analyses for the coupled bladed-disk system of LP turbine stages were completed. The dynamic analysis and fatigue analysis were followed to diagnose the integrity of LP turbine blades.

  • PDF

Design of exhaust manifold for pulse converters considering fatigue strength due to vibration

  • Cho, Kyung-Sang;Son, Kyung-Bin;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.694-700
    • /
    • 2013
  • The design of the exhaust manifold for the pulse converters of a 4 strokes high power medium-speed diesel engine is presented in terms of fatigue analysis. The said system undergoes thermal expansion due to high temperature of exhaust gas and is exposed to intrinsic vibration of the internal combustion engine. Moreover, the exhaust pulse generates pressure pulsating along the runner inside manifold. Under such circumstances, the design and construction of exhaust manifold must be carried out in a way to prevent early failure due to fracture. To validate the design concept, a test rig was developed to simulate the combination of thermal and vibrational movements, simultaneously. Experimental results showed that a certain sense of reliability can be achieved by considering a field factor obtained from the results of engine bench tests.

설계변수 변화에 따른 KTX 가선계의 동적응답 해석 (Dynamic Simulation of KTX Catenary System for Changing Design Parameters)

  • 김정수;박성훈
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.346-353
    • /
    • 2001
  • In this study dynamic characteristic of catenary system that supplies electrical power to KTX Korean high-speed trains are investigated. A simulation program based on 3-span and 6-span finite element models of the catenary is developed. The influences of the various design parameters on the dynamic responses of the catenary are determined. The main design parameters include tension on the contact and messenger wires and the stiffness of the droppers connecting the two wires. The vibrational responses are primarily determined by the reflections of the propagating wave, and the dropper stiffness is found to be the dominant factor that influences overall dynamic characteristics of the catenary.

  • PDF

한국형 소형 풍력 블레이드 개발에 관한 연구 (Development of the Small Size Wind Blade Optimized for Korean Wind)

  • 이장호;장세명;김상진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.286-289
    • /
    • 2006
  • To get the better efficiency in Korean type wind characteristics, a new wind turbine blade was developed with some structural, vibrational, and aero-elastic analysis for the design of the full-scale blade. A series of full domestic technology from design to manufacturing was created and used in the middle of the development of nelv wind blade. And it was equipped and measured at the wind test side in the Jeju island. After test, it is verified that the blade has the regular capacity of 10kW at the air velocity of 10m/s. And it shows better capacity in the low air-velocity compared to the imported blade. therefore it can be made by only domestic technology, and used for the domestic wind distribution with the better power generation.

  • PDF

시간-주파수 분석을 이용한 파이프 부식감시 (Application of Time Frequency Analysis to On Line Monitoring of Pipe Corrosion)

  • 박기용;이철권;이상정
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2616-2618
    • /
    • 2005
  • Time-frequency analysis (TFA) method was applied to identify the integrity of the internal local surface of a pipe where some chemical corrosions are likely to occur by acid mixed in the coolant of nuclear power plants. The spalling out of internal material pieces by corrosion induces some transient signals and the change of structural vibration of a local point in the pipe. It is therefore possible to detect the corrosion detachment through the measurement of the transient acoustic signals or the vibration signals. In this presentation, the TFA was configured on the vibrational signal data of the pipe and it is identified that the TFA can Provide an important information, i.e., the amplitude fluctuations in the instantaneous frequency of each characteristic frequency.

  • PDF

축예하중을 가한 알루미늄/복합재료 동시경화 샤프트의 비틀림 피로 특성 (Torsional Fatigue Characteristics of Aluminum/Composite Co-Cured Shafts with Axial Compressive Preload)

  • Kim, Jong-Woon;Hwang, Hui-Yun;Lee, Dai-Gil
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.183-186
    • /
    • 2003
  • Long shafts for power transmission should transmit torsional load with vibrational stability. Hybrid shafts made of unidirectional fiber-reinforced composite and metal have high fundamental bending natural frequency as well as high torque transmission capability. However, thermal residual stresses due to the coefficient difference of thermal expansion of the composite and metal are developed so that the high residual stresses decrease fatigue resistance of the hybrid shafts, especially at low operating temperatures. In this work, axial compressive preload was given to the shaft in order to change the residual stresses. Static and fatigue torsional tests were performed and correlated with stress analyses with respect to the preload and service temperature.

  • PDF