• Title/Summary/Keyword: Vibrational Frequency

Search Result 350, Processing Time 0.03 seconds

Two Dimensional Vibration Analysis of Cranck Shaft by Using Transfer Matrix Method (전달매트릭스법을 이용한 크랭크축의 2차원 진동해석)

  • 김광식;오재응;김만복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.455-462
    • /
    • 1991
  • This paper present an analysis method of crankshaft of four cylinder internal combustion engine for studying dynamic characteristics of the shaft. For simple analysis, uniform sections of journal, pin and arm parts were assumed. Transfer Matrix Method was used, considering branched part and coordinate transformation part. Natural frequencies, natural modes and transfer functions of crank shaft were investigated based upon the Timosenko beam theory: It was shown that the calculated natural frequencies, modeshapes agree well with the experimental results.

Prediction of Modified Structural Natural Frequencies and Modes using Interative Sensitivity Coefficient (감도계수 반복법을 이용한 구조물의 고유진동수 및 고유벡터 변화량 예측)

  • 이정윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.40-46
    • /
    • 2000
  • This study predicts the modified structural eigenvector and eigenvalue due to the change in the mass and stiffness of 2-dimesional continuous system by iterative calculation of the sensitivity coefficient using the original dynamic characteristic. The method is applied to examples of a crank shaft by modifing the mass and stiffness. The predicted dynamics characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness.

  • PDF

An Investigation of Shape Factor Effects on Elastic Modulus with Acoustic Resonance Method (음향공진법에서의 형상계수 영향에 관한 고찰)

  • 최영식;박명균;박세만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.795-798
    • /
    • 2002
  • In this investigation, experimental attempts were made to observe and determine the variations in elastic of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests in this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. It was found that the magnitudes of elastic constants decrease when MBS rubber was added in the range up to 9 phr and the shape factor effect in torsional vibration is more significant than the shape factor effect in flexural vibration.

  • PDF

Dynamic Characteristics in a Reflux Condenser

  • Lee, Jae-Young
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.322-326
    • /
    • 1997
  • The condensate in a single vertical reflux condenser with a tube of the large L/D ratio could carried over in both ways of fill-and-dump and the annular occurrent to steam flow. From the experimental observation made, a theoretical model based on the lumped parameter method is made to understand the dynamics of the reflux condenser. The present model predicts well the time period of fill-and-dump model and the natural vibrational frequency of the water column. This could be a first step to understand the complex phenomena in the reflux condenser such as itd improved thermal performance due to the well controlled pulsation in steam flow and the tube-to tube effect in the multi tube reflux condenser.

  • PDF

Dynamic Simulation of KTX Catenary System for Changing Design Parameters (설계변수 변화에 따른 KTX 가선계의 동적응답 해석)

  • 김정수;박성훈
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.346-353
    • /
    • 2001
  • In this study dynamic characteristic of catenary system that supplies electrical power to KTX Korean high-speed trains are investigated. A simulation program based on 3-span and 6-span finite element models of the catenary is developed. The influences of the various design parameters on the dynamic responses of the catenary are determined. The main design parameters include tension on the contact and messenger wires and the stiffness of the droppers connecting the two wires. The vibrational responses are primarily determined by the reflections of the propagating wave, and the dropper stiffness is found to be the dominant factor that influences overall dynamic characteristics of the catenary.

  • PDF

An Assessment of Elastic and Damping Material Properties of PVC/MBS by an Acoustic Resonance Method (음향공진법을 이용한 PVC/MBS의 탄성 및 감쇠 특성 평가)

  • 박명균;박세만;최영식;박상규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.766-772
    • /
    • 2002
  • In this investigation, experimental attempts were made to observe and determine the variations in elastic and damping properties of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests In this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. It was found that the magnitudes of elastic constants decrease while the damping capacity improve when MBS rubber was added in the range up to 9 phr.

Modal Synthesis Method Using Interpolated Rotational DOF (회전자유도 보간에 의한 모드합성법)

  • 장경진;지태한;박영필
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.503-514
    • /
    • 1995
  • In the case of performing experimental modal analysis(EMA) and finite- element analysis(EFA) for a whole structure of automotive body that is composed of many complex parts, a trouble may arise from the calculation time, the capacity of memory in computers and the experimental conditions, etc. In this paper, for the vibrational analysis of automotive body model, the efficient modal synthesis method by means of dividing the whole structure into two parts and performing EMA and FEA for each part is studied. In addition, the method based on Lagrange interpolation is proposed for approximating rotational degrees-of-freedom information and linking FEA with EMA. In result, by measuring translational degrees-of-freedom information of only few points and adopting only few modes, the linking method based on Lagrange interpolation turned out to be efficient and accurate in the low frequency range.

  • PDF

The Analysis of Vehicle Interior Noise by the Powertrain, and Measurement of Noise Trasnsfer Function using Vibro-Acoustic Reciprocity (파워트레인에 의한 차량 실내 소음 특성 및 전달 함수 측정)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.501-506
    • /
    • 2007
  • Structure-borne noise is the interior noise that results from the low frequency vibrational energy transmitted through those body and joint parts. The relation between the excitation of powertrain and resultant interior sound must be analyzed in order to identify and predict the structure borne noise. The method of acoustic source excitation is preferred than the method of mechanical force excitation to measure the NTF(noise transfer function). Because acoustical method is more convenient and reliable. In this paper, to analysis and identify vehicle interior noise by powertrain is performed, and the vibro-acoustic transfer function is extracted from experimental measurement. These are important step of TPA(transfer path analysis) to identify effect of interior noise resulted from powertrain running excitation.

  • PDF

Dynamic characteristics indentification of automobile exhaust system and determination of hanger optimal position (자동차 배기계의 동특성 규명 및 행거 최적위치의 결정)

  • 오재응;임동규;조준호;김만복
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.57-70
    • /
    • 1992
  • As automobile industry develope, design techniques to satisfy light weight and high efficiency in automobile parts is demanded. In this study modal analysis is performed using transfer matrix method to identify dynamic characteristics of exhaust system. It is estimated the theoretical transfer function by Pestel-Leckey method and the mode shapes in 3-D graphic. the validity of developed program is verified by comparing with the experimental results of exhaust system. Estimated modal parameters(natural frequency, vibrational mode, transfer function) are in accord with the experimental results. From the developed program, we can predict a location of the hanger which is determined by the lowest RMS value point, when displacement is given as an input at the engine side. We can find that attachment of spring modelled hanger at the hanger location bring vibration level down.

  • PDF

Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.765-777
    • /
    • 2020
  • In the context of classic conical shell formulation, nonlinear forced vibration analysis of truncated conical shells and annular plates made of multi-scale epoxy/CNT/fiberglass composites has been presented. The composite material is reinforced by carbon nanotube (CNT) and also fiberglass for which the material properties are defined according to a 3D Mori-Tanaka micromechanical scheme. By utilizing the Jacobi elliptic functions, the frequency-deflection curves of truncated conical shells and annular plates related to their forced vibrations have been derived. The main focus is to study the influences of CNT amount, fiberglass volume, open angle, fiber angle, truncated distance and force magnitude on forced vibrational behaviors of multi-scale truncated conical shells and annular plates.