• Title/Summary/Keyword: Vibration-Based

Search Result 5,262, Processing Time 0.034 seconds

Design of Geo-fence-based Smart Attendance System (지오펜스 기반 스마트 출결시스템 설계)

  • Hong, Seong-Pyo;Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.496-502
    • /
    • 2020
  • The electronic attendance management system is being introduced and operated on a pilot basis by some universities and educational institutions. However, most of the related systems have installed and operated the existing barcode and magnetic card systems. Classroom attendance is managed by introducing RF cards, but it causes problems such as recognition distance (less than 5cm) and the need for a check process in which students have to read the card each time with a reader for attendance. Also, it is not possible to respond in real time to the situation of midterm (early leave, absence from the second lecture time, etc.) because it is used in the lecture time of one subject with the record checked once. In order to solve these problems, the various mobile attendance systems proposed to solve these problems are also unable to fundamentally solve problems such as interim attendance and proxy attendance because they check attendance using only the application of a smartphone. In this paper, we use geofencing technology, which is a positioning-based technology that detects the entry and exit of people, objects, etc. in areas separated by virtual boundaries. The proposed system solves the problem of intermediate attendance and alternate attendance by setting the student to automatically record the access record when entering and leaving the classroom set as a geofence with a smartphone. In addition, it also provides a function to prevent unintentional mistakes that occur through the smartphone by limiting some of the functions of the smartphone such as silence, vibration, and Internet use when entering the classroom.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network (CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식)

  • Guiyoung Son;Soonil Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.284-290
    • /
    • 2024
  • Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Developmnet of Vibration and Impact Noise Damping Wood-based Composites (II) -The Influence of the Degree of Crosslinking on the Damping Properties of Interpenetrating Polymer Networks- (진동.충격음 흡수성능을 지니는 목질계 복합재료의 개발(II) -가교밀도가 상호침투망목고분자의 진동흡수성능에 미치는 영향-)

  • 이현종
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.47-55
    • /
    • 1998
  • In the search for broadband damping composites, it is desirable to have polymers with a broad and high loss region, covering the entire temperature and frequency range of interest. Interpenetrating polymer networks, IPN's, are materials composed of two or more crosslinked polymers intimately and irrevocably interwinded. The resulting distribution of microenviron-ments can result in a materials with a high mechanical loss broad end over that of either polymer component alone. In this study, several series of copolymer, crosslinked copolymer and copolymer/copolymer IPN's were synthesized for possible use as broadband damping materials. Then their dynamic tensile properties were measured and compared with the damping properties of sandwich composites. Dynamic mechanical analysis showed that the temperature of loss peak may be varied over a wide temperature range with formulation. The compatibility of IPN`s was depended on the compatibility of A and B polymers as well as crosslink density. The damping factor(tan ${\delta}_c$) of composites became greater when a polymer of approximate storage module(E`) range of 5X10$^7$ to 10$^9$ dyne/cm$^2$ and large tan ${\delta}$ at the same time was used. The damping properities of poly (2-EHA80-co-St20)/poly(2-EHA20-co-St80) IPN`s crosslinked with 3%-DEGDM were relatively better over a broad temperature range.

  • PDF

Variability of Mid-plane Symmetric Functionally Graded Material Beams in Free Vibration (중립면 대칭 기능경사재료 보의 자유진동 변화도)

  • Nguyen, Van Thuan;Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.127-132
    • /
    • 2018
  • In this paper, a scheme for the evaluation of variability in the eigen-modes of functionally graded material(FGM) beams is proposed within the framework of perturbation-based stochastic analysis. As a random parameter, the spatially varying elastic modulus of FGM along the axial direction at the mid-surface of the beam is chosen, and the thru-thickness variation of the elastic modulus is assumed to follow the original form of exponential variation. In deriving the formulation, the first order Taylor expansion on the eigen-modes is employed. As an example, a simply supported FGM beam having symmetric elastic modulus with respect to the mid-surface is chosen. Monte Carlo analysis is also performed to check if the proposed scheme gives reasonable outcomes. From the analyses it is found that the two schemes give almost identical results of the mean and standard deviation of eigen-modes. With the propose scheme, the standard deviation shape of respective eigen-modes can be evaluated easily. The deviated mode shape is found to have one more zero-slope points than the mother modes shapes, irrespective of order of modes. The amount of deviation from the mean is found to have larger values for the higher modes than the lower modes.

Determination of the water content in citrus leaves by portable near infrared (NIR) system (근적외분광분석법을 이용한 감귤잎의 수분 측정)

  • Suh, Eun-Jung;Woo, Young-Ah;Lim, Hun-Rang;Kim, Hyo-Jin;Moon, Doo-Gyung;Choi, Young-Hun
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.277-282
    • /
    • 2003
  • The amount of water for the cultivation of citrus is different based on the growing period. The effect of water stress induces to enhance of sugar accumulation in citrus. The water content in the leaves of citrus can be a index for watering during cultivation. The purpose of this study is to determine the water content of citrus leaves non-destructively by using near infrared spectroscopy (NIRS). Citrus leaves were prepared from 'Okitsu' Satusuma mandarin leaves (Citrus unshiu Marc.) ranging from 20.80 to 69.98% of water content by loss on drying method, and NIR reflectance spectra of citrus leaves were acquired by using a fiber optic probe. It was found that the variation of absorbance band 1450 nm from OH vibration of water depending on the water content change. Partial least squares regression (PLSR) was applied to develop a calibration model over the spectral range 1100-1700 nm. The calibration model predicted the water content for the validation set with a standard errors of prediction (SEP) of 0.97%. In order to validate the developed calibration model, routine analyses were performed using independently prepared citrus leaves. The NIR routine analyses showed good results with those of loss on drying method with a SEP of 0.81%. The rapid and non-destructive determination of the water content in citrus leaves was successfully performed by portable NIR system.

A study on the applicability of under ground structure using steel tubular roof in Korean geotechnical condition (대구경강관을 이용한 지하구조물 축조공법의 국내지반 적용성 연구)

  • Lee, Young-Bock;Kim, Jeong-Yoon;Park, Inn-Joon;Kim, Kyong-Gon;Lee, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.401-409
    • /
    • 2003
  • Recently, the development of underground structures is to be inevitably necessary due to the increase in population and traffic volume that has caused to the limit of urban land use and the heavy traffic jams. Therefore, underground structures such as subway, underground shopping centers, lifeline facilities and so on, have been increasingly constructed, On the other hand, several social problems have occurred during construction, i.e., ground subsidence, noise, and vibration. Therefore, safer and more beneficial methods for underground construction are on the demand. In this research, N.T.R.(New Tubular Roof) method has been modified and utilized for solving those problems and overcoming the difficulties connected with the bored tunnel construction of large underground openings in unfavorable ground, often under the water table, and with overburdens that are too shallow to solve problems of stability using traditional methods. The N.T.R. method has been modified to suit for Korean geotechnical conditions, and was made up for the weak points-the water leakage from walls and tops, the maintenance and the lack of stability-of the conventional methods. This paper dealt with the features and the applicability of N.T.R. Method based on the results from numerical analysis and data from in-situ monitoring system.

  • PDF

Dynamic Analyses on Embedded Piles Based on Wave Equation (파동방정식에 근거한 매입말뚝의 동적 분석)

  • Seo, Mi-Jeong;Park, Jong-Bae;Park, Yong-Boo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.5-13
    • /
    • 2015
  • For the bearing capacity evaluation, dynamic pile tests instead of static pile tests have been commonly used in embedded piles, which are known to have low noise and low vibration construction method. The objective of this study is to analyze the bearing capacity and penetration behaviors of embedded piles, which are constructed in different ground conditions, by using force and velocity signals obtained in the final blows during construction of embedded piles. For the dynamic pile analyses, the CAse Pile Wave Analysis Program (CAPWAP) and Wave Equation Analysis of Piles (WEAP) have been commonly used. In this study, the CAPWAP and WEAP are used for the analyses of the dynamic pile tests, which are conducted on embedded piles. The input values, output values, and force-velocity graphs of CAPWAP determined by analyzing the measured force-velocity signals are investigated. In addition, similar force-velocity singals are obtained from the WEAP by analyzing the input values of the WEAP. Considering the subsurface investigation results around the pile tips, if the N-value increases exponentially along the depth, toe quake value should be small, and therefore large bearing capacity is identified. On the contrary, if the N-value increases linearly, the bearing capacity is small because of large toe quake value. Furthermore, the stiffness of hammer cushion and pile cushion, which is difficult to find correct values, is recommended lower than 500 kN/mm. This study demonstrates that the results of WEAP may be similar to those of CAPWAP and the WEAP can be used to estimate the bearing capacity of embedded piles.