• Title/Summary/Keyword: Vibration-Based

Search Result 5,285, Processing Time 0.029 seconds

Reliability Based Design Optimization for Section Shape of Simple Structures (빔 단면형상에 대한 구조물 신뢰성 최적설계)

  • 임준수;임홍재;이상범;허승진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.672-676
    • /
    • 2002
  • In this paper, a reliability-based design optimization method, which enables the determination of optimum design that incorporate confidence range for structures, is studied. Response surface method and Monte Carlo simulation are utilized to determine limit state function. The proposed method is applied to the I-type steel structure for reliability based optimal design.

  • PDF

Development of Algorithm for Vibration Analysis Automation of Rotating Equipments Based on ISO 20816 (ISO 20816 기반 회전기기 진동분석 자동화 알고리즘 개발)

  • JaeWoong Lee;Ugiyeon Lee;Jeongseok Oh
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.93-104
    • /
    • 2024
  • Facility diagnosis is essential for the smooth operation and life extension of rotating equipment used in industrial sites. Compared to other diagnostic methods, vibration diagnosis can find most of the initial defects, such as unbalance, alignment failure, bearing defects and resonance, compared to other diagnostic methods. Therefore, vibration analysis is the most commonly used facility diagnosis method in industrial sites, and is usefully used as a predictive preservation (PdM) technology to manage the condition of the facility. However, since the vibration diagnosis method is performed based on experience based on the standard, it is carried out by experts. Therefore, it is intended to contribute to the reliability of the facility by establishing a system that anyone can easily judge defects by establishing a vibration diagnosis method performed based on experience as a knowledgeable code system. An algorithm was developed based on the ISO-20816 standard for vibration measurement, and the reliability was verified by comparing the results of vibration measurement at various demonstration sites such as petrochemical plant compressors, hydrogen charging stations, and industrial machinery with the results of analysis using a development system. The developed algorithm can contribute to predictive maintenance (PdM) technology that anyone can diagnose the condition of the rotating machine at industrial sites and identify defects early to replace parts at the exact time of replacement. Furthermore, it is expected that it will contribute to reducing maintenance costs and downtime due to the failure of rotating machines when applied to various industrial sites such as oil refining facilities, transportation, production facilities, and aviation facilities.

Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

  • Dong, Ren G.;Sinsel, Erik W.;Welcome, Daniel E.;Warren, Christopher;Xu, Xueyan S.;McDowell, Thomas W.;Wu, John Z.
    • Safety and Health at Work
    • /
    • v.6 no.3
    • /
    • pp.159-173
    • /
    • 2015
  • The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

System Analysis and Design for Vibration-Based Power Generation using Piezoelectric Materials (압전 재료를 이용한 진동에너지 변환 전력발생 시스템 해석 및 설계)

  • Keum, Myoung-Hun;Kim, Kyung-Ho;Lee, Seung-Yep;Ko, Byoung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.717-725
    • /
    • 2004
  • A power generation systems are proposed to convert ambient mechanical vibration into electrical energy using cantilever-type piezoelectric materials. The vibration-based power device can be used for self-powered systems without batteries. This paper presents the theoretical analysis for the coupled equations of piezoelectric and structural motions and investigates the dynamic characteristics of the self-power system using transfer function method. The theoretical model is verified by the finite element analysis of the resonance frequency, the dynamic response of the structure and the sensor sensibility. Experimental results measured using a prototype system agree with the theoretical predictions. The system is shown to produce 34.5 ㎼ in average. Finally, we perform the optimal design for system variables to maximize output power.

Friction-Based and Acoustically-Levitated Object Transport Using Ultrasonic Vibration (초음파 진동을 이용한 마찰 및 음향부상에 의한 물체의 수송)

  • Byoung-Gook Loh;Yong-Kuk Park
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.590-599
    • /
    • 2003
  • In this study. object transport method based on ultrasonic flexural vibration is presented. Ultrasonic vibration generates ultrasonic traveling waves on the surface of elastic medium. Objects are transported through the interaction with traveling waves propagating in medium. Two types of transport methods are studied: frictional drive and acoustic levitation. With frictional drive, objects are transported in contact with the beam in the opposite direction of wave propagation whereas with acoustic levitation, objects are acoustically levitated above the beam surface and transported in the wave propagation direction. Transport characteristics are experimentally investigated using objects of different shapes and sizes. The transition from acoustic levitation mode to frictional drive mode is also examined. and it is found to occur when the ratio of mass to area of an object exceeds the threshold ratio of mass to area. It is envisaged that this feasibility study will serve as a stepping-stone for ultrasonic vibration to become an effective industrial material handling device in the future.

Ambient Vibration-Measurement of Real Building Structure by Using Fiber Optic Accelerometer System

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.373-379
    • /
    • 2006
  • Vibration-based structural health monitoring is one of non-destructive evaluation (NDE) techniques for civil infrastructures. This paper presents a novel fiber optic accelerometer system to monitor civil engineering structures and a successful application of the novel sensor system for measuring ambient vibration of a real building structure. This sensor system integrates the Moire fringe phenomenon with fiber optics to achieve accurate and reliable measurements. The sensor system is immune to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. A prototype sensor system has been developed, together with a signal processing software. The experimental studies demonstrated the high-performance of the fiber optic sensor system. Especially, the sensor was successfully used for monitoring a real building on UCI (University of California Irvine, USA).

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.

Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Choi, Kyeong-Ho;Lee, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1558-1565
    • /
    • 2015
  • In this paper, we propose a new method for detecting bearing faults using vibration signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations are used for a training process, and a two-stage classification process is used for detecting bearing faults and their status. The proposed approach is applied to outer-race bearing fault detection in three-phase squirrel-cage induction motors. The experimental results show that the proposed method can effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis.

Measurement of Absolute Magnitude and Position of HDD Unbalance based on Mobility (모빌리티 측정을 통한 하드디스크의 Unbalance 검출 및 보정방법)

  • Choi, Hyun;Kim, In-Woong;Lee, Jae-Won;Jeong, Yong-Koo;Choi, Jung-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.358-362
    • /
    • 2002
  • The HDD unbalance, with higher rotational speed, is directly influenced by the mechanical assembly allowance between clamping disk and platter disk. The low frequency structural vibration induced by the unbalance force finally gives rise to the structure borne noise of the personal computer. To meet the noise and vibration requirements, the absolute unbalance mass of HDD needs to be measured and adjusted in the disk assembling stage. This study introduces the measurement methods of the absolute magnitude and position of the unbalance mass of HDD based on the mobility and acceleration orbit. The absolute unbalance mass can be obtained by the acceleration responses and the mobility of the mechanical part, while the position of the unbalance mass ran be obtained by the rotation acceleration orbit.

  • PDF

Design of Magneto-rheological Fluid Based Device (자기유변유체를 이용한 공학 장치의 설계)

  • Kim, Jeong-Hoon;Lee, Chong-Won;Jung, Byung-Bo;Park, Young-Jin;Cao, Guangzhong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.544-549
    • /
    • 2001
  • The effect of power supply voltage on the performance limits in a laboratory Magneto-rheological fluid based device was identified by experiments. It suggests that the frequency range of motion for control be limited by the voltage attenuation due to the coil inductance and the maximum power supply voltage set for practical use of MRF devices. In this work, the magnetic and electrical characteristics of MRF device are investigated and a design procedure is formulated to achieve the desired performance for a given power supply.

  • PDF