• 제목/요약/키워드: Vibration suppression control

검색결과 254건 처리시간 0.025초

2관성 공진계에 대한 반복 학습 제어의 응용에 관한 연구 (Study on Application of Iterative Learning Control to 2-Mass Resonant System)

  • 이학성;문승빈;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.42-46
    • /
    • 2004
  • A 2-mass resonant system is one that has a flexible coupling between a load and a driving motor. Due to this flexibility, the system often suffers vibration especially when the motor is controlled for higher speed command. In order to suppress such a vibration, an iterative learning control is applied to the 2-mass resonant system in this paper. The motor speed is controlled according to the relation with the load speed. The desired speed trajectories are derived under the condition for no vibration. The simulation result suggests that the proposed method effectively suppresses the vibration even when there exist model uncertainties.

압전 감지기와 작동기를 이용한 양단 고정보의 능동 진동 제어 (Active Vibration Control of Fixed-Fixed Beam Using Piezoelectric Sensor and Actuator)

  • 한상보;곽문규;최이호;윤신일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.260-265
    • /
    • 1996
  • Active control of forced vibration response of a fixed-fixed beam implementing PZT sensor/actuator was conducted. Among various control scheme, PPF control was chosen due to its amenability and natural robustness. For a single frequency excitation, the PPF control provided reasonable controllability with the appropriate damping ratio of the compensator. Without increasing actuator voltage, best controllability can be obtained by the exact tuning between the natural frequency of the structure and the cut-off frequency of the compensator. Even the multi-frequency excitation, the PPF provided good vibration suppression for corresponding mode of interest, even though residual modes should be controlled with independent compensators for each mode.

  • PDF

압전체를 사용한 외팔보 진동의 위상지연 제어 (Phase delay control of a cantilever beam using piezoelectric materials)

  • 황진권;최종호
    • 제어로봇시스템학회논문지
    • /
    • 제3권4호
    • /
    • pp.343-349
    • /
    • 1997
  • In a lightly damped cantilever beam, most of the vibration energy is found around natural frequencies. Based on this, a phase delay control for suppressing vibration of the beam is proposed in this paper. This controller is designed to behave like a velocity feedback controller at the frequencies of modes to be controlled. Also, this controller is designed in consideration with uncontrolled modes for robust stability and improving of the sensitivity function of the control system. This phase delay control is applied to vibration suppression of a cantilever beam with a pair of a piezoelectric actuator and a piezoelectric sensor. Experimental results showed that the phase delay control functions efficiently.

  • PDF

축방향으로 이동하는 현의 경계제어 (Boundary Control of Container Cranes as an Axially Moving String System)

  • 박한;홍금식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.387-392
    • /
    • 2004
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle for systems with changing mass. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

엘리베이터 권상기 브레이크 시스템의 소음 및 진동 감소를 위한 솔레노이드 구동 제어기법 개발 (Development of a Solenoid Control Technique for the Suppression of Noise and Vibrations of the Brake System of Elevator Traction Machine)

  • 양동호;김기영;허석;곽문규;이재하
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.451-458
    • /
    • 2012
  • This paper is concerned with the suppression of noise and vibrations of the brake system of elevator traction machine by means of a solenoid control technique. The solenoid is used to hold the brake shoe, which is then released by turning the solenoid off. Since the brake shoe hits the brake disk, vibrations and noise occur. We developed the solenoid control technique based on the dynamic behavior of the solenoid. The theoretical model for the solenoid is modeled by using linear magnetic principles. The solenoid model was then combined with the vibration model to simulate the vibrations of brake system. The simulation results show that the additional pulse input to the solenoid can decrease the vibrations. The timing of the applied pulse is determined by observing the current. The experimental results show that both the vibrations and noise can be substantially decreased, which validates the approach developed in this paper.

Vibration suppression in high-speed trains with negative stiffness dampers

  • Shi, Xiang;Zhu, Songye;Ni, Yi-qing;Li, Jianchun
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.653-668
    • /
    • 2018
  • This work proposes and investigates re-centering negative stiffness dampers (NSDs) for vibration suppression in high-speed trains. The merit of the negative stiffness feature is demonstrated by active controllers on a high-speed train. This merit inspires the replacement of active controllers with re-centering NSDs, which are more reliable and robust than active controllers. The proposed damper design consists of a passive magnetic negative stiffness spring and a semi-active positioning shaft for re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of quasi-static spring deflection. Numerical investigations verify that the proposed re-centering NSD can improve ride comfort significantly without amplifying spring deflection.

PPF와 SRF 조합기법을 사용한 지능구조물의 능동진동제어 (Vibration Suppression of Smart Structures Using a Combined PPF-SRF Control Technique)

  • 곽문규;라완규;윤광준
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.811-817
    • /
    • 1997
  • This paper is concerned with the active vibration controller design for the grid structure based on the positive position feedback (PPF) and the strain rate feedback (SRF) control. A new control methodology by the combination of the PPF and SRF control can suppress all the modes of the structure theoretically and can be easily implemented with analog circuits. The underlying concept for the design of the new controller is that the SRF controller stabilizes the modes higher than the second mode and the PPF controller stabilizes the fundamental mode which is destabilized by the SRF controller. In order for the new controller to be implemented succesfully, the collocated control is necessary. To this end, the piezoceramic sensor and actuator are located as close as possible, thus realizing the nearly collocated control. The combined PPF and ARF controller proves its effectiveness by experiments.

  • PDF

능동 동흡진기를 이용한 차량의 능동진동제어 실험 (Active Vibration Control Experiment on Automobile Using Active Vibration Absorber)

  • 양동호;곽문규;김정훈;박운환;오상훈
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.741-751
    • /
    • 2011
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mounts have been developed to cope with such specifications. In this study, the active vibration absorber which can be attached to the sub-frame of automobile is used for the suppression of vibrations caused by engine. The active vibration absorbing system consists of sensor, actuator and controller where a control algorithm is implemented using DSP. The vibration caused by engine reveals harmonic disturbances varying with engine revolution. Therefore, the control algorithm should be able to cope with harmonic disturbances. In this study, the modified higher harmonic control technique which can selectively suppress harmonic disturbance is considered. Experimental results on automobile show that the proposed active vibration absorbing system is effective in suppressing vibrations caused by engine.

하이브리드 스마트 구조물의 진동 제어 (Vibration Control of Hybrid Smart Structures)

  • 박동원;박용군;박노준;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.130-135
    • /
    • 1996
  • This paper presents a proof-concept investigation on the active vibration control of two hybrid smart structures (HSSs). The first one is consisting of a piezoelectric film (PF) actuator and an electro-rheological fluid(ERF) actuator, and the other is featured by a piezoceramic (PZT) actuator and a shape memory alloy (SMA) actuator. For the PF/ERF hybrid smart structure, both the increment of the damping ratios and the suppression of the tip deflections are evaluated in order to demonstrate control effectiveness of the PF actuator and ERF actuator and the hybrid actuation. For the PZT/SMA hybrid smart structure, the PZT actuator takes account of the high frequency excitation, while the SMA actuator exerts large vibration control force. The experimental results exhibit superior abilities of the hybrid actuation systems to tailor elastodynamic responses of the HSS rather than a single class of actuation system alone.

  • PDF