• Title/Summary/Keyword: Vibration sensitivity

Search Result 669, Processing Time 0.03 seconds

Identification of Connections of Vibration Systems Using Substructural Sensitivity Analysis (부분구조 기반 민감도 해석을 이용한 진동시스템의 연결부 특성 추정)

  • 서세영;김도연;김찬묵;이두호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.786-792
    • /
    • 2001
  • In this paper, the identification of connections for a vibration system has been presented using FRF-based substructural sensitivity analysis. The substructural design sensitivity formula is derived and plugged into a commercial optimization program, MATLAB, to identify connection stiffness of an air-conditioner system of passenger car. The air-conditioner system, composed of a compressor and a bracket is analyzed by using FRF-based substructural(FBS) method. To obtain the FRFs, FE model is built for the bracket, and the impact hammer test is performed for the compressor. Obtained FRFs are combined to calculate the reaction force at the connection point and the system response. Connection element properties are determined by minimizing the difference between a target FRF and calculated one. It is shown that the proposed identification method is effective even for a real problem.

  • PDF

Piezoelectric Sensitivity Analysis for Vibration Control of a Plate (평판의 진동제어를 위한 압전감도 해석)

  • Hwang, Jin-Kwon;Song, Chul-Ki;Choi, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.239-246
    • /
    • 2000
  • This paper investigates optimal locations of piezoelectric actuators and sensors on a thin plate. To locate actuators and sensors properly is important in controlling modal vibrations well. A piezoelectric sensitivity index is introduced to select optimal locations for vibration control of each mode. The sensitivity expresses the efficiency of actuating and sensing modal forces according to locations of a piezoelectric material on a plate. The piezoelectric sensitivities for two types of plate, an all-clamped plate, and a free-free plate, are derived theoretically and are verified experimentally. Also, its usefulness Is experimentally shown to control vibration of the all-clamped plate with piezoelectric materials.

  • PDF

Structural Damage Detection for Metal Panel Using Embedded Sensitivity Functions (내재민감도 함수를 이용한 단열타일의 손상 탐지 기법)

  • Yang, Chul-Ho;Adams, Douglas E.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.697-705
    • /
    • 2005
  • Vibration-based damage identification method using embedded sensitivity functions is discussed. The theory of embedded sensitivity functions is reviewed and applied to identify damage in a three degree-of-freedom system and a metallic panel. Embedded sensitivity functions are algebraic combinations of measured frequency response functions that reflect changes in the response of mechanical systems when mass, damping or stiffness parameters are changed. By comparing the embedded sensitivity functions with finite difference functions using undamaged and damaged frequency response functions, damage is shown to be properly detected, located and quantified in theory and practice assuming that structures of interest are only damaged in one location. Simulated and experimental results indicate that the technique is most effective when changes to frequency response functions are small to avoid distorsions in the estimated perturbations due to variations in the sensitivity functions.

Human Sensitivity Responses to Vibrotactile Stimulation on the Hand : Measurement of Differential Thresholds (진동식 촉각 자극에 대한 손의 상대적 민감도 반응)

  • Lee, Seong-Il
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 1999
  • This study investigated human operator's perceptual and psychophysical responses to vibrotactile stimulation on various parts of the hand. Using a small vibrotactile display, the effects of three mechanical parameters consisting vibrotactile stimulations, i.e., vibration frequency, pulse-width modulation duty cycle, and number of contactors, on differential thresholds were examined at five different loci of the hand. It was observed that differential threshold varies with vibration frequency and number of active contactors. Differential sensitivity was the greatest at the vibration frequency of 120 Hz. The differential sensitivity was not found to be affected by loci on the hand. The area of stimulation on the hand was also found to be significant in that the sensitivity increased with the number of active contactors. It should be noted that the conclusions from this study generally correspond to those from the previous study on the absolute sensitivity. which means that tactile sensitivity to vibrotactile stimulations can be controlled with a systematic and consistent passion for emulating normal everyday contact on human hands in teleoperation and virtual reality applications.

  • PDF

Design and Fabrication of Piezoceramic Cantilever Type Vibration Sensors (압전세라믹 외팔보형 진동센서의 설계 및 제작)

  • 정이봉;노용래
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.377-386
    • /
    • 1997
  • A cantilever type piezoceramic vibration sensor was developed that could make up for the short-comings of current vibration sensors, such as high price, low sensitivity, and complex structure. For the design, in conjunction with piezoelectric constitutive equations, we derived full analytic response equations of the piezoelectric bimorph sensor to external forces. The external forces were supposed to take the form of either step or sinusoidal force. Based on the results, actual piezoelectric vibration sensors were fabricated and tested for verification of the theoretical results. Further, comparison of the performance of the developed sensor was made with that of a commercially available representative vibration sensor so that quantitative evaluation of its sensitivity could be made. The sensor developed in this work showed excellent sensitivity and thermal stability in addition to the merits of simple structure and low fabrication cost in comparison with conventional mass-loaded piezoelectric sensors.

  • PDF

Design Sensitivity Analysis of Zwicker's Loudness Using Adjoint Variable Method (보조변수법을 이용한 Zwicker 라우드니스의 설계민감도)

  • Wang, Se-Myung;Kwon, Dae-Il;Kim, Chaw-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1432-1436
    • /
    • 2006
  • Feasibility of optimizing Zwicker's loudness has been shown by using MSC/NASTRAN, SYSNOISE, and a semi-analytical design sensitivity by Wang and Kang. Design sensitivity analysis of Zwicker's loudness is developed by using ANSYS, COMET, and an adjoint variable method in order to reduce computation. A numerical example shows significant reduction of computation time for design sensitivity analysis.

  • PDF

Design Tool Development of NVH of Vehicle Body (자동차 소음, 진동 저감을 위한 차체 설계 프로그램 개발)

  • 왕세명;이제원;기성현;문희곤;서진관
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.57-63
    • /
    • 1998
  • In this paper, a design tool using continuum design sensitivity analysis (DSA) method has been developed for noise, vibration, and harshness (NVH). Design sensitivity is formulated, implemented numerically, and named SENS1. SENS1 can compute the design sensitivity using model and response files of MSC/NASTRAN of vehicle. A of real vehicle model is considered to validate SENS1. Numerical study shows SENS1 is a useful tool to improve NVH performances of vehicle body.

  • PDF

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (동적응답을 최소화하는 비구속형 제진보의 제진부위 최적설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.656-661
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beams is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. The loss factors of partially covered unconstrained beam are calculated by the modal strain energy method. Vibration responses are calculated by using the modal superposition method, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in minimizing vibration responses with unconstrained damping layer treatment.

  • PDF

Technology for Initial Design and Analysis of Vehicle Pillar Structures for Vibration (저진동 차체의 필라 설계 및 최전화 기법)

  • 임홍재;이상범
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.395-402
    • /
    • 1995
  • In general low frequency vibration characteristics like an idleshake is mainly influeced by pillar section properties and joints. So the design technique development of vehicle pillar structures is required to initial design and vehicle development stage. In this paper to develop pillar structure design technique considering low frequency vibration characteristics, strain energy method, design sensitivity analysis method, and design optimization method using commercial finite element analysis program and optimization program are presented.

  • PDF

A Study on the Design Process of Steering System considering Frequency and Sensitivity (주파수와 감도를 고려한 스티어링 시스템 설계 프로세스 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.208-211
    • /
    • 2005
  • This paper describes the development process of steering system for reduce idle vibration through the data level of frequency and sensitivity. High stiffness and light weight vehicle is a major target in the refinement of passenger cars to meet customers' contradictable requirements between NVH performance and fuel economy. The target frequency of the steering system is set by benchmarking of a competitive vehicle and the vibration mode map is used to separate steering column modes from resonance of body structure and engine idle rpm. This paper descirbes the analysis approach process for high stiffness of steering system and the design guideline is suggested about steering column and support system by using mother car at initial design stage. We used a patent map in order to analyze accurately a technical trend and suggested the design process using dynamic damper of steering system considering sensitivity. And we established techniques of analysis on steering system and evaluated the level of accuracy of analysis through correlating the test and analysis results. It makes possible to design the good NVH performance vehicle at initial design stage and save vehicles to be used in tests. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF