• Title/Summary/Keyword: Vibration response analysis

Search Result 1,762, Processing Time 0.021 seconds

Shock Response Analysis of Guard Robot Considering the Elastic Effect (탄성 효과를 고려한 감시 로봇 모델의 충격 응답 해석)

  • Kim, Jung-Chan;Jeong, W.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.107-110
    • /
    • 2006
  • In this paper, shock response analysis considering the elastic effects of guard robot is performed using computer simulations when a machine gun of guard robot fires a shot continuously. The bodies of guard robot are modelled in flexible multi-body. The results of its analysis is compared with results of rigid bodies. The tools of computer simulation is used in Multi-body dynamics program.

  • PDF

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

Power Flow Analysis of Vibration of a Plate Covered with a Damping Sheet (제진 평판 진동에 대한 파워흐름해석)

  • Lee, Jin-Young;Kil, Hyun-Gwon;Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.530-536
    • /
    • 2009
  • In this paper, the power flow analysis(PFA) has been used to analyze the vibration of a plate covered with a damping sheet. Experiments have been performed to measure the loss factor and frequency response functions of the plate covered with the damping sheet. The data for the loss factor has been used as the input data to predict the vibration of the coupled plates with PFA. The comparison between the experimental results and the predicted PFA results for the frequency response functions has been performed. It showed that PFA can be effectively used to predict structural vibration of a plate covered with a damping sheet in medium-to-high frequency range.

Development of the Vibration Analysis Model of Passenger Car (승용차의 진동해석모델 개발)

  • Kwon, Soon-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • According to the developments of automobile industry, the technology to enhance noise, vibration and harshness(NVH) performance has been studying in a point of view of ride comfort and quietness. Especially the use of computer aided engineering(CAE) simulation tools such as finite element(FE) analysis allows engineers to efficiently evaluate NVH performance. This paper presents the method to bulid FE models for full vehicle including engine, transmission. suspension and steering system, also to evaluate vibration performance of full vehicle. The full vehicle model, which is discussed, is correlated with the result of the frequency response measurement in the case of the car shake performance for high speed driving.

Analysis of local vibrations in the stay cables of an existing cable-stayed bridge under wind gusts

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.513-534
    • /
    • 2008
  • This paper examines local vibrations in the stay cables of a cable-stayed bridge subjected to wind gusts. The wind loads, including the self-excited load and the buffeting load, are converted into time-domain values using the rational function approximation and the multidimensional autoregressive process, respectively. The global motion of the girder, which is generated by the wind gusts, is analyzed using the modal analysis method. The local vibration of stay cables is calculated using a model in which an inclined cable is subjected to time-varying displacement at one support under global vibration. This model can consider both forced vibration and parametric vibration. The response characteristics of the local vibrations in the stay cables under wind gusts are described using an existing cable-stayed bridge. The results of the numerical analysis show a significant difference between the combined parametric and forced vibrations and the forced vibration.

Experimental Study On Power Flow Analysis of Vibration of Various Coupled Plates (다양한 연성 평판 진동에 대한 파워흐름해석법의 실험적 연구)

  • Hwang, S.G.;Kil, H.G.;Lee, G.H.;Lee, J.Y.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.901-904
    • /
    • 2007
  • The power flow analysis (PFA) can be effectively used to predict structural vibration in medium-to-high frequency ranges. In this paper, vibration experiments have been performed to observe the analytical characteristics of the power flow analysis of the vibration of various coupled plates. Those plates include two plates coupled with angles of $90^{\circ}$\;and\;30^{\circ}$, respectively. In the experiment, the loss factor and the input mobility at a source point on each coupled plate have been measured. The data for the loss factors have been used as the input data to predict the vibration of the coupled plates with PFA. The frequency response functions have been measured over the surface of the coupled plates. The comparison between the experimental results and the predicted PFA results for the frequency response functions has been performed.

  • PDF

Flow Induced Vibration of Reactor Internals Structure : Analysis and Experiment (원자로 내부구조물의 유체흐름에 의한 진동 - 해석 및 실험)

  • Rhee, Hui-Nam;Choi, Suhn;Kim, Tae-Hyung;Hwang, Jong-Keun;Kim, Jung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.201-207
    • /
    • 1995
  • A series of vibration assessment programs has been performed for Yonggwang Nuclear Power Plant Unit 4 (YGN 4) in order to verify the structural integrity of the reactor internals for flow induced vibration prior to its commercial operation. The structural analysis was done to provide the basis for measurement and the theoretical evidence for the structural integrity of the reactor internals. The actual flow induced hydraulic loads and reactor internals vibration response data were measured and recorded during pre-core hot functional testing of the plant. Then, the measured data have been reduced and analyzed, and compared with the analysis results such as the frequency contents, stresses, strains and displacements. It is concluded that the structural analysis methodology performed for vibration response of the reactor internals due to the flow induced vibration is appropriately conservative, and also that the structural integrity of YGN 4 reactor internals to flow induced vibration is acceptable for long term operation.

  • PDF

Vibration Response of a Human Carpal Muscle (인체 수관절 근육의 진동 응답)

  • Chun, Han-Yong;Kim, Jin-Oh;Park, Kwang-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • This paper examines the dynamic characteristics of a human carpal muscle through theoretical analysis and experiment. The carpal muscle was modeled as a 1-DOF vibration system and vibration response due to a ramp function force was calculated. The electromyogram signal corresponding to the muscle excitation force was measured, and the excitation force function of an envelope curve from the electromyogram signal was extracted. The ramp input function of electrical stimulation to the carpal muscle was applied by using a device for functional electrical stimulation, and the angular displacements corresponding to steady state response were measured. Theoretical calculations of the vibration response displacements were compared with the experimental results of the angular displacements, and have shown a good agreement with the result that is linearly proportional to the excitation force magnitude. As a result, the relationship between the input current of the electrical stimulation and the excitation force magnitude was inferred. The result was shown that it can be applied to develop rehabilitation training devices.

A Study On Flight Vibration Environmental Test of Unmanned Aerial Vehicle using Dual Electric Vibration Exciters (이중 전동식 진동 시험기를 이용한 무인 비행체의 비행진동 환경시험 연구)

  • Jangseob Choi;Dongho Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.252-261
    • /
    • 2023
  • Analysis of dynamic characteristics and flight vibration test for unmanned aerial vehicles was studied by using dummy test body. The FEM model for dummy test body was supplemented by results of modal and random vibration test. The free end boundary condition to simulate flight environments was made by test setup using bungee cable. Prior to the flight vibration test using a dual electric vibration exciters, the test procedure to calculate quantitative vibration level was studied by using military specification. The actual test was successfully done by using the analysis and pretest results. From the analysis results, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test and to get the response of any point which could not be measured by the test. The results of this study will much contribute to the Test and Evaluation of unmanned aerial vehicles.

An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems (회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법)

  • 홍성욱;박종혁
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF