• 제목/요약/키워드: Vibration response analysis

검색결과 1,767건 처리시간 0.029초

Inhomogeneous bonding state modeling for vibration analysis of explosive clad pipe

  • Cao, Jianbin;Zhang, Zhousuo;Guo, Yanfei;Gong, Teng
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.233-242
    • /
    • 2019
  • Early detection of damage bonding state such as insufficient bonding strength and interface partial contact defect for the explosive clad pipe is crucial in order to avoid sudden failure and even catastrophic accidents. A generalized and efficient model of the explosive clad pipe can reveal the relationship between bonding state and vibration characteristics, and provide foundations and priory knowledge for bonding state detection by signal processing technique. In this paper, the slender explosive clad pipe is regarded as two parallel elastic beams continuously joined by an elastic layer, and the elastic layer is capable to describe the non-uniform bonding state. By taking the characteristic beam modal functions as the admissible functions, the Rayleigh-Ritz method is employed to derive the dynamic model which enables one to consider inhomogeneous system and any boundary conditions. Then, the proposed model is validated by both numerical results and experiment. Parametric studies are carried out to investigate the effects of bonding strength and the length of partial contact defect on the natural frequency and forced response of the explosive clad pipe. A potential method for identifying the bonding quality of the explosive clad pipe is also discussed in this paper.

압전 산화아연 나노와이어의 동적거동 및 압전소자 응용성 (Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials)

  • 이웅
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.43-53
    • /
    • 2021
  • Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.

프린터 음질평가의 신뢰성을 위한 결정오차 모델설계 및 실험적 검증 (Design of Decision Error Model for Reliability of Sound Quality Analysis and Its Experimental Verification)

  • 김의열;이영준;이상권
    • 한국소음진동공학회논문집
    • /
    • 제22권7호
    • /
    • pp.605-618
    • /
    • 2012
  • In this study, the possibility of decision error is investigated to identify and improve the reliability of participants in the process of conducting the sound quality analysis for laser printers. So far, there is not a way to identify and express the possibility of individual participant quantitatively. Thus, the decision error model is proposed which is based on the expectation value between the perceived sounds. Through the experimental verification on the laser printers, it was found that the possibility of decision error is affected according to the normalized difference. The possibility of decision error has inversely proportional to the normalized difference between the perceived sounds. When the normalized difference becomes small value, the uncertainly between decisions is inversely increase, and then it is difficult to obtain the proper result in the process of the jury evaluation for laser printers. For this reason, in this study, the proposed decision error model is added in the previous step of the correlation verification. Comparing to the conventional process only using the correlation based method, after the reliability of each participant is verified, the correlation with the mean response of participants is verified. It was found that the participants who were recognized as having unusual preferences are actually identified as having the reliability problem. Based on the results of this study, the proposed decision error model will be helpful to identify and improve the reliability of participants in the following study for the sound quality analysis.

A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

  • Lee, Dong-Sup;Cho, Dae-Seung;Kim, Kookhyun;Jeon, Jae-Jin;Jung, Woo-Jin;Kang, Myeng-Hwan;Kim, Jae-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.128-141
    • /
    • 2015
  • Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

유한요소해석을 이용한 Gantry Robot의 동특성 및 측정 결과와의 상관관계 연구 (A Study for the Dynamic Characteristics and Correlation with Test Result of Gantry Robot based on Finite Element Analysis)

  • 고만수;권순기;이석
    • 디지털융복합연구
    • /
    • 제13권1호
    • /
    • pp.269-274
    • /
    • 2015
  • IT 산업의 발달로 AOI 장비의 보급이 확산되고 있으며, 장비의 사용되는 카메라의 높은 해상도를 요구하고 있다. 높은 해상도를 얻기 위해 카메라의 중량이 증가되고 있으며, 그로 인해 진동변위가 커지게 되어 촬상에 문제가 생기고 제어 또한 어려워지고 있다. 본 연구에서는 유한요소 해석프로그램인 NX/NASTRAN을 이용하여 카메라가 관성에 의한 충격력을 받을 때의 과도응답분석을 해 보았다. 또한 Laser Interferometer 측정 결과와의 상관관계 분석을 통하여 향후 AOI의 구조 개선 시, 유한요소해석으로 설계의 신뢰성을 검증할 수 있도록 하기 위한 해석모델을 개발하였다.

FSI 해석에 의한 비정형 초고층 빌딩의 풍응답 특성에 관한 연구 (A Study on the Wind-Induced Response Characteristics of Freeform Shaped Tall Building using FSI Analysis)

  • 박성철;김효진;한상을
    • 한국전산구조공학회논문집
    • /
    • 제27권4호
    • /
    • pp.223-230
    • /
    • 2014
  • 본 논문에서는 FSI해석을 이용하여 비정형 초고층 빌딩의 풍응답 특성을 연구하였다. 해석모델은 Twist모델이며, 뒤틀림 각도와 풍가속도의 상관관계에 대해 연구 중점을 두었다. 먼저 단방향 해석을 수행하여 100년 재현주기 풍속에 대한 최대 횡 변위를 구하고, 제한조건을 만족하는 탄성계수를 산출한다. 그리고 양방향 해석을 수행, 시간이력해석을 통해 산출된 탄성계수와 임의의 밀도를 가지는 풍가속도를 예측하게 된다. 정방형 모델은 높이 400m, 변장비 1:1, 세장비 8로 설정, 뒤틀림 모델은 0도에서 90도까지 15도 간격으로, 90도에서 360도까지 90도 간격으로 비틀어 회전시켰다. 형상에 따른 풍가속도 예측 결과, 정방형 모델이 뒤틀림 모델보다 크게 산출되어 풍진동 영향에 더 민감한 것을 검증하였다.

Nonlinear response of r.c. framed buildings retrofitted by different base-isolation systems under horizontal and vertical components of near-fault earthquakes

  • Mazza, Fabio;Mazza, Mirko;Vulcano, Alfonso
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.135-144
    • /
    • 2017
  • Near-fault ground motions are characterized by high values of the ratio between the peak of vertical and horizontal ground accelerations, which can significantly affect the nonlinear response of a base-isolated structure. To check the effectiveness of different base-isolation systems for retrofitting a r.c. framed structure located in a near-fault area, a numerical investigation is carried out analyzing the nonlinear dynamic response of the fixed-base and isolated structures. For this purpose, a six-storey r.c. framed building is supposed to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by current Italian code in a high-risk seismic zone. In particular, elastomeric (e.g., high-damping-laminated-rubber bearings, HDLRBs) and friction (e.g., steel-PTFE sliding bearings, SBs, or friction pendulum bearings, FPBs) isolators are considered, with reference to three cases of base isolation: HDLRBs acting alone (i.e., EBI structures); in-parallel combination of HDLRBs and SBs (i.e., EFBI structures); FPBs acting alone (i.e., FPBI structures). Different values of the stiffness ratio, defined as the ratio between the vertical and horizontal stiffnesses of the HDLRBs, sliding ratio, defined as the global sliding force divided by the maximum sliding force of the SBs, and in-plan distribution of friction coefficient for the FPs are investigated. The EBI, EFBI and FPBI base-isolation systems are designed assuming the same values of the fundamental vibration period and equivalent viscous damping ratio. The nonlinear dynamic analysis is carried out with reference to near-fault earthquakes, selected and scaled on the design hypotheses adopted for the test structures.

단자유도 건물에 설치된 마찰감쇠기의 등가점성감쇠비 (Equivalent Viscous Damping Ratio of a Friction Damper Installed in a SDOF Building)

  • 성지영;민경원
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.199-208
    • /
    • 2010
  • 건물에 설치된 마찰감쇠기는 외력의 크기에 따라 정지와 운동의 상태를 반복하여 외부 입력에너지를 소산시키기 때문에 외력과 응답관계가 비선형이다. 마찰감쇠기가 설치된 단자유도 건물은 마찰감쇠기외에 점성감쇠가 동시에 존재하므로 해석적인 정해를 구하기가 어렵다. 본 연구에서는 첫째, 점성과 마찰감쇠가 있는 단자유도계 건물의 자유진동 정해를 통하여 변위응답과 가속도 응답특성을 분석하였다. 둘째, 자유진동의 경우 응답이 멈출 때까지 소산에너지식을 이용하여 등가점성감쇠비를 구하였다. 셋째, 조화가진 일 때는 수치해석을 통하여 마찰력비 $F_r$에 따른 응답 특성을 알아보았다. 넷째, 조화가진의 경우 에너지 균형식을 바탕으로 등가점성감쇠비를 유도하였다. 등가점성감쇠비는 변위응답비의 영향을 받으므로 응답을 알아야만 구할 수 있다. 건물 응답의 진동수 특성은 협소영역(narrow band)이므로 고유진동수에 의해 지배된다고 가정하여 등가점성감쇠비를 구하였다. 마지막으로, 유도한 자유진동과 조화가진의 등가점성감쇠비를 이용한 등가선형운동방정식의 해를 비선형 수치해석 한 결과와 비교하여 검증하였다.

Optimal lateral load pattern for pushover analysis of building structures

  • Habibi, Alireza;Saffari, Hooman;Izadpanah, Mehdi
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.67-77
    • /
    • 2019
  • Pushover analysis captures the behavior of a structure from fully elastic to collapse. In this analysis, the structure is subjected to increasing lateral load with constant gravity one. Neglecting the effects of the higher modes and the changes in the vibration characteristics during the nonlinear analysis are the main obstacles of the proposed lateral load patterns. To overcome these drawbacks, whereas some methods have been presented to achieve updated lateral load distribution, these methods are not precisely capable to predict the response of structures, precisely. In this study, a new method based on optimization procedure is developed to obtain a lateral load pattern for which the difference between the floor displacements of pushover and Nonlinear Dynamic Analyses (NDA) is minimal. For this purpose, an optimization problem is considered and the genetic algorithm is applied to calculate optimal lateral load pattern. Three special moment resisting steel frames with different dynamic characteristics are simulated and their optimal load patterns are derived. The floor displacements of these frames subjected to the proposed and conventional load patterns are acquired and the accuracy of them is evaluated via comparing with NDA responses. The outcomes reveal that the proposed lateral load distribution is more accurate than the previous ones.