References
- Akbas, B., Tugsal, U.M. and Kara, F.I. (2009), "An evaluation of energy response and cumulative plastic rotation demand in steel moment-resisting frames through dynamic/static pushover analyses", Struct. Des. Tall Special Build., 18(4), 405-426. https://doi.org/10.1002/tal.442
- Amini, M.A. and Poursha, M. (2018), "Adaptive Force-Based Multimode Pushover Analysis for Seismic Evaluation of Midrise Buildings", J. Struct. Eng., 144(8), p.04018093. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002070
- Antoniou, S. and Pinho, R. (2004a), "Advantages and limitations of adaptive and non-adaptive force-based pushover procedures", J. Earthq. Eng., 8(4), 497-522. https://doi.org/10.1080/13632460409350498
- Antoniou, S. and Pinho, R. (2004b), "Development and verification of a displacement-based adaptive pushover procedure", J. Eng., 8(5), 643-661.
- ATC-40 Report, (1996), Seismic evaluation and retrofit of concrete buildings; Applied Technology Council, Redwood City, CA, USA.
- Attard, T. and Fafitis, A. (2005), "Modeling of higher-mode effects using an optimal multi-modal pushover analysis", WIT Transact. Built Environ., 81.
- Chen, Z., Chui, Y.H., Ni, C., Doudak, G. and Mohammad, M. (2014), "Load distribution in timber structures consisting of multiple lateral load resisting elements with different stiffnesses", J. Perform. Constr. Facil., 28(6), A4014011. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000587
- Chopra, A.K. and Goel, R. (2001), "Modal pushover analysis of SAC building", Proceedings of SEAOC Convention, San Diego, CA, USA.
- Chopra, A.K., Goel, R.K. and Chinatana-pakdee, C. (2004), "Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands", Earthq. Spectra, 20(3), 757-778. https://doi.org/10.1193/1.1775237
- Costa, R., Providencia, P. and Ferreira, M. (2017), "Influence of joint modelling on the pushover analysis of a RC frame", Struct. Eng. Mech., Int. J., 64(5), 641-652. https://doi.org/10.12989/sem.2017.64.5.641
- Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633
- Elnashai, A.S. (2001) "Advanced inelastic static (pushover) analysis for earthquake applications", Struct. Eng. Mech., Int. J., 12(1), 51-69. http://dx.doi.org/10.12989/sem.2001.12.1.051
- Endo, Y., Pela, L. and Roca, P. (2017), "Review of different pushover analysis methods applied to masonry buildings and comparison with nonlinear dynamic analysis", J. Earthq. Eng., 21(8), 1234-1255. https://doi.org/10.1080/13632469.2016.1210055
- Etedali, S. and Irandegani, M.A. (2015), "A proposed lateral load pattern for pushover analysis of structures subjected to earthquake excitations", J. Vibroeng., 17(3), 1363-1371.
- Fakhraddini, A., Fadaee, M.J. and Saffari, H. (2018), "A lateral load pattern based on energy evaluation for eccentrically braced frames", Steel Compos. Struct., Int. J., 27(5), 623-632. https://doi.org/10.12989/scs.2018.27.5.623
- Ganjavi, B., Hajirasouliha, I. and Bolourchi, A. (2016), "Optimum lateral load distribution for seismic design of nonlinear shear-buildings considering soil-structure interaction", Soil Dyn. Earthq. Eng., 88, 356-368. https://doi.org/10.1016/j.soildyn.2016.07.003
- Ghanoonibagha, M., Gol, M.R.A. and Ranjbar, M.R. (2016), "Study of higher mode effects and lateral load patterns in pushover analysis of steel frames with steel shear wall", Adv. Sci. Technol. Res. J., 10(29), 13-27. https://doi.org/10.12913/22998624/61926
- Gulkan, P. and Sozen, M.A. (1974), "Inelastic responses of reinforced concrete structures to earthquake motions", J. Am. Concrete Inst., 71(12), 604-610.
- Gupta, B. and Kunnath, S.K. (2000), "Adaptive spectra-based pushover procedure for seismic evaluation of structures", Earthq. Spectra, 16(2), 367-391. https://doi.org/10.1193/1.1586117
- Habibi, A. and Bidmeshki, S. (2018), "A dual approach to perform geometrically nonlinear analysis of plane truss structures", Steel Compos. Struct., Int. J., 27(1), 13-25.
- Izadpanah, M. and Habibi, A. (2015), "Evaluating the spread plasticity model of IDARC for inelastic analysis of reinforced concrete frames", Struct. Eng. Mech., Int. J., 56(2), 169-188. http://dx.doi.org/10.12989/sem.2015.56.2.169
- Izadpanah, M. and Habibi, A.R. (2018), "New Spread Plasticity Model for Reinforced Concrete Structural Elements Accounting for Both Gravity and Lateral Load Effects", J. Struct. Eng., 144(5), p.04018028. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002016
- Jan, T.S., Liu, M.W. and Kao, Y.C. (2004), "An upper-bound pushover analysis procedure for estimating the seismic demands of high-rise buildings", Eng. Struct., 26(1), 117-128. https://doi.org/10.1016/j.engstruct.2003.09.003
- Kalkan, E. and Kunnath, S.K. (2006), "Adaptive modal combination procedure for nonlinear static analysis of building structures", J. Struct. Eng., ASCE, 132(11), 1721-1731. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1721)
- Kim, S.P. and Kurama, Y.C. (2008), "An alternative pushover analysis procedure to estimate seismic displacement demands", Eng. Struct., 30(12), 3793-3807. https://doi.org/10.1016/j.engstruct.2008.07.008
- Kim, J., Kim, M. and Eldin, M.N. (2017), "Optimal distribution of steel plate slit dampers for seismic retrofit of structures", Steel Compos. Struct., Int. J., 25(4), 473-484. https://doi.org/10.12989/scs.2017.25.4.473
- Krawinkler, H. (1995), "New trends in seismic design methodology", Proceedings of European Conference on earthquake Engineering, Duma, Russia, pp. 821-830.
- Lawson, R.S., Vance, V. and Krawinkler, H. (1994), "Nonlinear static pushover analysis-why, when and how?", Proceedings of the 5th U.S. Conference on Earthquake Engineering, 1, 283-292.
- Lopez-Menjivar, M.A. (2004), "Verification of a displacementbased Adaptive Pushover method for assessment of 2-D Reinforced Concrete Buildings", Ph.D. Thesis; European School for Advances Studies in Reduction of Seismic Risk (ROSE School), University of Pavia, Italy.
- Mansouri, I., Soori, S., Amraie, H., Hu, J.W. and Shahbazi, S.H. (2018), "Performance based design optimum of CBFs using bee colony algorithm", Steel Compos. Struct., Int. J., 27(5), 613-622. https://doi.org/10.12989/scs.2018.27.5.613
- Mao, J., Zhai, C. and Xie, L. (2008), "An improved modal pushover analysis procedure for estimating seismic demands of structures", Earthq. Eng. Eng. Vib., 7(1), 25-31. https://doi.org/10.1007/s11803-008-0786-y
- Ozgenoglu, M. and Arici, Y. (2017), "Comparison of ASCE/SEI Standard and modal pushover-based ground motion scaling procedures for pre-tensioned concrete bridges", Struct. Infrastruct. Eng., 13(12), 1609-1623. https://doi.org/10.1080/15732479.2017.1310258
- Papanikolaou, V.K. and Elnashai, A.S. (2005), "Evaluation of conventional and adaptive pushover analysis I: Methodology", J. Earthq. Eng., 9(6), 923-941. https://doi.org/10.1080/13632460509350572
- Papanikolaou, V.K., Elnashai, A.S. and Pareja, J.F. (2006), "Evaluation of conventional and adaptive pushover analysis II: Comparative results", J. Earthq. Eng., 10(1), 127-151. https://doi.org/10.1080/13632460609350590
- Paret, T.F., Sasaki, K.K., Eilbeck, D.H. and Freeman, S.A. (1996), "Approximate inelastic procedures to identify failure mechanisms from higher mode effects", Proceedings of the Eleventh World Conference on Earthquake Engineering (Vol. 2).
- Qiao, S., Han, X., Zhou, K. and Li, W. (2017), "Conceptual configuration and seismic performance of high-rise steel braced frame", Steel Compos. Struct., Int. J., 23(2), 173-186. https://doi.org/10.12989/scs.2017.23.2.173
- Quintero-Duran, M., Candelo, J.E. and Sousa, V. (2017), "Recent trends of the most used metaheuristic techniques for distribution network reconfiguration", J. Eng. Sci. Technol. Rev., 10(5).
- Reinhorn, A.M., Roh, H., Sivaselvan, M., Kunnath, S., Valles, R., Madan, A., Li, C., Lobo, R. and Park, Y. (2009), IDARC 2D version 7.0: A program for the inelastic damage analysis of buildings, Buffalo, NY, USA.
- Saiidi, M. and Sozen, M.A. (1981), "Simple nonlinear seismic analysis of R/C structures", J. Struct. Div., ASCE, 107(ST5), 937-951. https://doi.org/10.1061/JSDEAG.0005714
- Sarkar, P., Prasad, A.M. and Menon, D. (2016), "Seismic evaluation of RC stepped building frames using improved pushover analysis", Earthq. Struct., 10(4), 913-938. http://dx.doi.org/10.12989/eas.2016.10.4.913
- Shakeri, K., Shayanfar, M.A. and Kabeyasawa, T. (2010), "A story shear-based adaptive pushover procedure for estimating seismic demands of buildings", Eng. Struct., 32(1), 174-183. https://doi.org/10.1016/j.engstruct.2009.09.004
- Shayanfar, M.A., Ashoory, M., Bakhshpoori, T. and Farhadi, B. (2013), "Optimization of modal load pattern for pushover analysis of building structures", Struct. Eng. Mech., Int. J., 47(1), 119-129. http://dx.doi.org/10.12989/sem.2013.47.1.119
- Tiana, L. and Qiu, C. (2018), "Modal pushover analysis of selfcentering concentrically braced frames", Struct. Eng. Mech., Int. J., 65(3), 251-261. https://doi.org/10.12989/sem.2018.65.3.251
- Uniform Building Code (UBC) (1997), International Conference of Building Officials, Vol. 2.
- Zhang, Z., Pan, J., Fu, J., Singh, H.K., Pi, Y.L., Wu, J. and Rao, R. (2017), "Optimization of long span portal frames using spatially distributed surrogates", Steel Compos. Struct., Int. J., 24(2), 227-237. https://doi.org/10.12989/scs.2017.24.2.227
Cited by
- Seismic investigation of cyclic pushover method for regular reinforced concrete bridge vol.78, pp.1, 2019, https://doi.org/10.12989/sem.2021.78.1.041
- A new procedure for post-buckling analysis of plane trusses using genetic algorithm vol.40, pp.6, 2019, https://doi.org/10.12989/scs.2021.40.6.817