• Title/Summary/Keyword: Vibration property

Search Result 470, Processing Time 0.023 seconds

Optimum Design of Linear Motor by Using Taguchi Method (다구찌 기법을 이용한 선형 모터의 최적 설계)

  • Seol, Jin-Soo;Lee, Woo-Young;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.192-195
    • /
    • 2005
  • Nanometer operating linear motor is difficult to control the nano-positioning because of the vibration between structures changing of mechanical friction force happened by properties of the vibration and heat caused by operating of a mover. Therefore, it is required to analysis the vibration and heat about a mover. In this paper, we will analyze the property of vibration through analyzing by using FEM a mover of linear motor developed in the non-load situation and suggest the direction of optimal design about a mover by using method of DOE, also try to find the solution to operate the linear motor stabilized through the reducing weight of mover considering the vibration.

  • PDF

Impact Echo Test for the Dynamic Characteristics of a Vibration-Mitigated Concrete Structure

  • Chung, Young-Soo;Park, Young-Goo
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Recent construction activities have given rise to civil petitions associated with vibration-induced damages or nuisances. To mitigate unfavorable effects of construction activities, the measures to reduce or isolate from vibration need to be adopted. In this research, a vibration-mitigated concrete, which is one of the active measures for reducing vibration in concrete structures, was investigated. Concrete was mixed with vibration-reducing materials (i.e. latex, rubber power, plastic resin, and polystyrofoam) to reduce vibration and tested to evaluate dynamic material properties and structural characteristics. Normal and high strength concrete specimens with a certain level of damage were also tested for comparisons. In addition, recycling tires and plastic materials were added to produce a vibration-reducing concrete. A total of 32 concrete bars and eight concrete beams were tested to investigate the dynamic material properties and structural characteristics. Wave measurements on concrete bars showed that vibration-mitigated concrete has larger material damping ratio than normal or high strength concrete. Styrofoam turned out to be the most effective vibration-reducing mixture. Flexural vibration tests on eight flexural concrete beams also revealed that material damping ratio of the concrete beams is much smaller than structural damping ratio for all the cases.

  • PDF

Free Vibration Analysis of Stiffened Plates Using Polynomials Having the Property of Timoshenko Beam Functions (Timoshenko 보함수 성질을 갖는 다항식을 이용한 보강판의 교유진동 해석)

  • 김병희;김진형;조대승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.623-628
    • /
    • 2004
  • In this study, the assumed-mode method using characteristic polynomials of Timoshenko beam is applied for the free vibration analysis of rectangular stiffened plates. The polynomial is derived considering the rotational constraint along the boundary edges of plate and the orthogonal relation of Timoshenko beam functions, which enables to simplify the free vibration analysis of plate structure having various boundary conditions. To verify the validity and effectiveness of the adopted method, numerical analysis for cross-stiffened plates were carried out and its results were compared with those obtained by the general purpose FEA software.

  • PDF

Estimation of the Vibration Endurance Characteristics of Air Cleaner Insulators for Vehicles (차량용 에어클리너 인슐레이터의 진동 내구성 평가)

  • Kim Jung Heon;Kim Seockhyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.897-902
    • /
    • 2004
  • In this paper, a vibration endurance test is performed on rubber insulators used for vehicle air cleaners. Based on the test results, the endurance characteristics depending on the type and the material of the insulators are estimated. The frequency response characteristics of the air cleaner system including the insulator are investigated to identify the cause of wear and failure of the insulator. New insulator models with improved endurance characteristics are proposed and tested. Test results show that the vibration endurance property of the insulator is strongly dependent on the frequency response characteristics of the air cleaner system as well as the deformed shape of the insulator.

Damping Properties of the Spray Type Vibration Reduction Material for the Use of the Automotive Interior Parts (자동차 내장용 분무형 제진재의 제진특성)

  • 윤주호;윤여성;김영명;김의용;김종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.138-146
    • /
    • 2002
  • The new type of vibration reduction material far an automotive interior, which is spray-type liquid material, is developed in this study The new material has better damping property and lower mass density than other damping materials, for example asphalt sheet. It can be sprayed by an automatic robot, so it is expected to improve productivity and cut down manpower. And it solves a poor adhesion problem and makes an automotive to be lightweight by optimizing spray process. So, It is a next generation automotive vibration reduction material. In this paper, the chemical process for making the new damping materials is described. And then, the damping properties of the vibration reduction materials are analyzed by modal testing of damping treatment specimens. The new vibration reduction materials have good damping properties than asphalt sheet in the experimental results.

Optimal Design of Vibration Isolation System in Optical Disc Drives (광디스크 드라이브의 방진계 최적설계)

  • 이은경;이기성;장헌탁;임경화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.961-966
    • /
    • 2001
  • The schematic design process is formulated to develop the vibroisolating rubber mount in optical disc drives. The dynamic model of vibration isolation system is established by using a rigid body with 6 degree of freedom and linear springs with damping property. Considering the practical vibration condition of DVDP(Digital Versatile Disk Player), the required properties of vibroisolating rubber mounts are investigated. Also finite element model of a vibroisolating rubber mount is used to obtain shape design concept and identify the characteristics of a rubber mount which satisfies the required properties from previous design stage. Finally the evaluation method of dynamic properties of vibroisolating rubber mounts is established by utilizing modal test method. Based on the developed process, vibroisolating rubber mounts with a good performance have been developed.

  • PDF

Using structural intensity approach to characterize vibro-acoustic behavior of the cylindrical shell structure

  • Wang, Yuran;Huang, Rong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.297-319
    • /
    • 2018
  • In this paper, the vibro-acoustic behaviors of vibrational cylindrical shells are investigated by using structural intensity approach. The reducing interior noise method for vibrating cylindrical shells is proposed by altering and redistributing the structural intensity through changing the damping property of the structure. The concept of proposed novel method is based on the properties of structural intensity distribution on cylindrical shells under different load and damping conditions, which can reflects power flow in the structures. In the study, the modal formulas of structural intensity are developed for the steady state vibration of cylindrical shell structures. The detailed formulas of structural intensity are derived by substituting modal quantities, in which the effect of main parameters such as weight coefficients and distribution functions on structure intensity are analyzed and discussed. Numerical simulations are first carried out based on the structural intensity analytical solutions of modal formulas. Through simulating the coupling vibration and acoustical radiation problems of cylindrical shell, the relationship between vibro-acoustic and structural intensity distribution is derived. We find that for cylindrical shell, by properly arranging damping conditions, the structural intensity can be efficiently changed and further the noise property can be improved. The proposed methodology has important implications and potential applications in the vibration and noise control of fuselage structure.

Vibration Analysis of wind turbine gearbox with frequency response analysis (주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석)

  • Park, Hyunyong;Park, Junghun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

Vibration Control of a Passenger Vehicle Featuring MR Suspension Units (MR 현가장치를 장착한 승용 차량의 진동제어)

  • 이환수;최승복;이순규
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • This paper presents vibration control performance of a passenger vehicle featuring magneto-rheological (MR) suspension units. As a first step, a cylindrical shock absorber is designed and manufactured on the basis of Bingham Property of a commercially available MR fluid. After verifying that the damping force of the shock absorber can be controlled by the intensity of magnetic field(or input current), it is applied to a full-car model. An optimal controller is then formulated to effectively suppress unwanted vibration of the vehicle system. The control performances are evaluated via hardware-in-the-loop simulation(HILS), and presented in both time and frequency domains.

  • PDF

Optimal Switching Parameter Control of Semi-Active Engine Mount

  • Truong, Thanh Quoc;Ahn, Young-Kong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1-4
    • /
    • 2005
  • This paper describes work on isolation of vibration related engine by a hydraulic engine mount with controllable area of inertia track. Automotive engine mounts are required to constrain motion of engine shake resulting from low-frequency road input of shock excitation and also to isolate noise and vibration generated by the engine with unbalanced disturbance at the high frequency range. The property of the mount depends on vibration amplitude and excitation frequency, which means that the excitation amplitude is large in low excitation frequency range and small in high frequency range. In this paper, theoretical works with model of the mount to reduce vibrations related engine were conducted. The volumetric stiffness of the mount is greatly changed according to the switching the area of the inertia track. Therefore, when the area of the inertia track is tuned, the transmissibility of the mount is effectively reduced.

  • PDF