• 제목/요약/키워드: Vibration prediction

검색결과 1,088건 처리시간 0.025초

지하철에 의한 지반진동 예측에 관한 연구 (Study on the Prediction of Ground-borne Vibration Induced by Subway)

  • 장서일;김득성;이재원
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.175-184
    • /
    • 2004
  • Ground-borne noise and vibration generated by underground transit system has been recognized as an important environmental problem. This study reviews several of the procedures that have been used to predict ground-borne vibration. The vibration responses are measured at three sites that have different soil qualities. The measured vibration levels are compared with the predicted results by previously used vibration level prediction models. There are some drawbacks to apply these prediction models to selected sites because most of the existing prediction models are primarily based on empirical data and all of them lack of analytical models for the mechanism of ground-borne vibration generation. radiation, and propagation. In this study a numerical method, which is based on explicit differential method, is used to compensate for the shortcomings of existing prediction models. Although numerically computed results are not quantitatively in good agreement with the measured results, the trends are comparable in the sense that vibration level does not decrease monotonically with distance. Also, the site with the deepest tunnel gives the highest vibration level.

지하철에 의한 지반 진동 예측에 관한 연구 (Study for the prediction of ground-borne vibration induced by subway)

  • 이재원;김득성;장서일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1287-1292
    • /
    • 2001
  • Subway train-induced ground-borne vibration is studied. Previously used vibration level prediction equations are reviewed. Measured vibration levels are compared with the predicted results and numerically computed results. The results show that vibration level does not decrease proportionally with the distance.

  • PDF

경암층 발파현장에서 진동예측 및 장약량산정 (Vibration Prediction and Charge Estimation in Hard Rock Blasting Site)

  • 박연수;박선준;최선민;문수봉;문병옥;정경열;정태형;황승일;김민중;박상철;김정주;이병근
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.313-319
    • /
    • 2009
  • The blasting has a lot of economic efficiency and speediness but it can damage to a neighbor structure, a domestic animal and a cultured fish due to the blasting vibration, then the public grievance is increased. Therefore, we need to manage the blasting vibration efficiently. The prediction of the correct vibration velocity is not easy because there are lots of different kinds of the scale of blasting vibration and it has a number of a variable effect. So we figure the optimum line through the least-squares regression by using the vibration data measured in hard rock blasting and compared with the design vibration prediction equation. As a result, we confirm that the vibration estimated in this paper is bigger than the design vibration prediction equation in the same charge and distance. If there is a Gaussian normal distribution data on the left-right side of the least squares regression, then we can estimate the vibration prediction equation on reliability 50%(${\beta}=0$), 90%(${\beta}=1.28$), 95%(${\beta}=1.64$). 99.9%(${\beta}=3.09$). As a result, it appears to be suitable that the reliability is 99% at the transverse component, the reliability 95% is at the vertical component, the reliability 90% is at the longitudinal component and the reliability is 95% at the peak vector sum component.

가스 파이프라인의 차량진동 응답 예측 (A Response Estimation for Vehicle Vibration of Gas Pipeline)

  • 박선준;박연수;강성후
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, vibration response of aerial gas pipeline due to vehicle loads was quantitatively estimated through experiment and analysis in open cut construction site. The vehicle vibration of various construction machines causes serious effect to the aerial gas pipeline. The new vibration prediction equations presented in this study can estimate the vibration velocity response of the aerial gas pipeline. In the nitration prediction equations, the vehicle′s weight and traveling velocity, which are the sources of vibration, are combined into the term called, "scaled weight" Methods to reduce vibration were proposed in case the vibration velocity response of the gas pipeline exceeded the vibration criterion, using the vibration prediction equations presented in this study. One was to limit the vehicle′s traveling velocity and the other to install the isolation equipment. Both methods can be estimated quantitatively.

지하철 운행에 의한 인접건물의 진동영향 평가 연구 (Reduction and Evaluation of Subway Induced Vibration Effects on Surrounding Buildings)

  • 박지훈;민경원;이루지;최석주;염성곤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.738-742
    • /
    • 2005
  • Ground vibration at Gil-dong in Seoul induced by the 5th ling of Seoul Subway is predicted using various prediction methods and compared with measured vibration. Also, several issues on the improvement of prediction methods are discussed. Furthermore, as an alternative vibration source, measured vibration acceleration level(VAL) on the tunnel wall of the Bundang line of Seoul Subway is applied to the prediction of the VAL at the location mentioned previously. Then requirements accompanied to the suggestion of the new vibration source appropriate to the condition of Seoul Subway.

  • PDF

배관 표면진동과 방사효율을 이용한 배관 소음예측기법 연구 (A Study on the Radiated Noise the Prediction in the Pipe by Fluid Induced Vibration using the Radiation Efficiency and Pipe Surface Vibration)

  • 이종주;박경훈;정우진;서영수
    • 한국소음진동공학회논문집
    • /
    • 제24권10호
    • /
    • pp.763-769
    • /
    • 2014
  • This study is on the experiment and prediction of the pipe noise due to the internal fluid. The vibration of pipe external surface and noise in air were measured according to the internal fluid velocity and pipe type. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The 900 mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the method using the pipe surface vibration and radiation efficiency shows good agreement with experimental result.

설계 민감도 해석을 활용한 진동내구 예측방법 연구 (Vibration fatigue prediction using design sensitivity analysis)

  • 김찬중;주형준;신성영;권성진;이봉현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.488-493
    • /
    • 2011
  • Authors previously suggested the design sensitivity analysis based on transmissibility function and identified the sensitivity of measured point over the small modification of system dynamics. On the other hand, the acceleration data will not reveal the strain information at the same location and authors suggested energy isoclines that successfully predict the fatigue damage on the interesting location to overcome the drawback of acceleration over fatigue society. Both of methodologies, sensitivity analysis and fatigue damage prediction, commonly use the response acceleration response as main indicator. In this paper, authors investigate the advanced method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with finite element model of a simple notched specimen and the prediction of fatigue damage at notched location is conducted for accelerations at different measurement locations that show different sensitivity contribution, either.

  • PDF

디젤 발전기세트의 구조진동특성 연구 (Analysis and Prediction of Structural Vibration for Diesel Engine Generator Set)

  • 이수목;김관영;김원현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.948-954
    • /
    • 2002
  • The structural vibration of a diesel generator set was investigated through analyses and tests. FE modeling and normal mode analysis were performed and compared with measured results for both structure components and generator set assembly. The results of component analyses were fairly well coincident with measured results but those of assembled generator set showed more or less discrepancies. Discussions were given about the uncertainties for vibration characteristics of component structures and assembled running structures especially concerning their nonlinearities and damping effects. Detailed excitation analysis fellowed by forced response analysis was done from the engine and pressure data to compare with the actual measured vibration. As results the vibration prediction for frame structures of reciprocating internal combustion engine was confirmed reliable to some extent.

  • PDF

시추공 시험발파를 이용한 대전 신탄진 지역의 발파진동 예측 (Prediction of Blasting-induced Vibration at Sintanjin Area, Daejeonusing Borehole Test Blasting)

  • 이충원;박성용
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.55-62
    • /
    • 2018
  • Problems on vibration due to blasting for infrastructure development are getting important because of a civil appeal. Blasting-induced vibration is representative construction pollution, hence, it is possible that a number of environmental damages occur. In this study, borehole test blasting was conducted at Sintanjin area, Daejeon and square root equation with 95% confidence level was proposed for prediction of blasting-induced vibration. The vibration value predicted from this equation was more conservatively evaluated than the values predicted from U.S. Department of Interior, Bureau of Mines (USBM) and Nippon Oil & Fats Co., Ltd. (NOF) equations. Therefore, the proposed equation in this study seems to contribute for safety blast design. However, for optimal blast design, inducing equation for prediction of blasting-induced vibration through the identical test blasting with field construction such as rock slope blasting would be required.

단일공 발파파형 중첩모델링 자료를 이용한 지반 진동의 예측 (Prediction of Ground Blasting Vibration using Superposition Modeling Data of Single Hole Blasting Waveform)

  • 김종인;강추원
    • 터널과지하공간
    • /
    • 제17권6호
    • /
    • pp.484-492
    • /
    • 2007
  • 국내에서는 주로 환산거리 진동예측식에 의한 발파진동 예측 방법이 사용되고 있다. 그러나 이러한 환산거리방식은 실규모의 발파가 시행되어져야 할 필요성이 있다. 최근 국내에서는 터널 등의 공사 시행 전 사전 조사단계에서 발파진동의 영향권을 예측하려는 시도로서 지질 조사용 시추공 등에 장약 발파하여 지반진동을 측정하고 본 발파의 발파 진동을 예측하는 방법이 사용되고 있다. 그러나 이러한 발파진동 예측 방법은 본 발파시의 진동의 전달 특성을 완전하게 반영하지는 못한다. 이러한 발파진동 예측방법의 결점을 보완하기 위하여 본 연구에서는 사전 조사 단계의 단일공 파형 중첩 모델링을 통하여 발파진동을 예측하는 방법을 개발하였다.