• Title/Summary/Keyword: Vibration path

Search Result 382, Processing Time 0.02 seconds

The Development of Evaluation Process for Dynamic Characteristics of Door Module (자동차용 모듈화 도어의 동특성 평가 시험법 개발)

  • Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Jang, Woon-Sung;Lee, Joon-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.291-296
    • /
    • 2007
  • This study presents the evaluation process for door module. Its objective evades the resonance generated at module plate due to the operation of window regulator motor. For this study, the design improvement process is composed of experimental methods having three steps. First step is modal analysis at door assembly status for acquisition of dynamic characteristics which are modal frequency and damping. Second step is a vibration experiment to get the test mode considered an efficiency of window regulator motor. Last step is a vibration measurement by the form of $6{\times}6$ array on module plate. A vibration measurement of 6x6 array form can be got to three analysis results which are a transfer path of vibration using cross correlation function, a vibration map using OA level and a contribution by frequency band using coherent output power spectrum on module plate. These results are applied to SDM(structural dynamic modification) for design improvement to get around the resonance on module plate by the excitation of window regulator motor.

  • PDF

Characteristics of Micro-Machining Using Two-Dimensional Tool Vibration

  • Ahn, Jung-Hwan;Lim, Han-Seok;Son, Seong-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • This paper discusses the feasibility of improving micro-machining accuracy by using two-dimensional(2-D) vibration cutting. Vibration cutting is generated by two piezo actuators arranged orthogonally : one is actuated by a sine curve voltage input, and the other is actuated by a phase-shifted sine curve voltage. A tool attached to the vibrator oscillates in a 2-D elliptical motion, depending on the frequencies, amplitudes, and the phase shifts of two input signals and the workpiece feedrate. Along the elliptical tool locus, cutting is done in the lower part, and non-cutting is done in the upper part. By this way a unique feature of 2-D vibration cutting, that is, air lubrication between a tool and chips, is caused. Another unique feature of 2-D vibration cutting was experimentally verified, that is, some negative thrust force occurs as the direction of chip movement on a tool rake face is reversed. Those features not only help chips flow smoothly and continuously but also reduce cutting force, which results in a higher quality machined surface. Through tool path simulations and experiments under several micro-machining conditions, the 2-D vibration cutting, compared to conventional cutting, was found to result in a great decrease in the cutting force, a much smoother surface, and much less burr.

  • PDF

A Study on the Noise and Vibration Path of Hermetic Rotary Compressor by SEA (통계적 에너지 해석 기법에 의한 밀폐형 회전 압축기의 소음진동 전달경로 해석)

  • Hwang, Seon-Woong;Ahn, Byung-Ha;Jeong, Hyeon-Chul;Jeong, Weui-Bong;Kim, Kyu-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.869-874
    • /
    • 2002
  • Hermetic rotary compressor is one of the most important components for air conditioning system since it has a great effect on both the performance and the noise and vibration of the system. Noise and vibration of rotary compressor is occurred due to gas pulsation during compression process and unbalanced dynamic force. In order to reduce noise and vibration, It is necessary to identify sources of noise and vibration and effectively control them. Many approaches have been tried to identify noise sources of compressor. However, compressor noise source identification has proven to be difficult since the characteristics of compressor noise are complicated due to the interaction of the compressor parts and gas pulsation. In this work, Statistical Energy Analysis has been used to trace the energy flow in the compressor and identify transmission paths from the noise source to the sound field.

  • PDF

A Study on the Dynamic Characteristics of Door Module for Vehicle (자동차용 모듈화 도어의 동특성 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Jang, Woon-Sung;Lee, Joon-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1093-1101
    • /
    • 2007
  • This study presents the design improvement process for door module. Its objective evades the resonance generated at module plate due to the operation of window regulator motor. For this study, the design improvement process is composed of experimental methods having three steps. First step is modal analysis at door assembly status for acquisition of dynamic characteristics which are modal frequency and damping. Second step is a vibration experiment to get the test mode considered an efficiency of window regulator motor. Last step is a vibration measurement by the form of $6{\times}6$ array on module plate. A vibration measurement of $6{\times}6$ array form can be got to three analysis results which are a transfer path of vibration using cross correlation function, a vibration map using OA level and a contribution by frequency band using coherent output power spectrum on module plate. These results are applied to SDM(structural dynamic modification) for design improvement to get around the resonance on module plate by the excitation of window regulator motor.

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.

Design and Implementation of Vibration Isolation System for Mobile Doppler Wind LIDAR

  • Song, Xiaoquan;Chen, Chao;Liu, Bingyi;Xia, Jinbao;Stanic, Samo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.103-108
    • /
    • 2013
  • The operation of a Doppler wind LIDAR in a mobile environment is very sensitive to shocks and vibrations, which can cause critical failures such as misalignment of the optical path and damage to optical components. To be able to stabilize the LIDAR and to perform wind field measurements in motion, a shock absorption and vibration isolation system was designed and implemented. The performance of the vehicle-mounted Doppler wind LIDAR was tested in motion, first in a circular test route with a diameter of about 30 m and later in regular expressway traffic. The vibration isolation efficiency of the system was found to be higher than 82% in the main vibration area and shock dynamic deflection was smaller than maximal deflection of the isolator. The stability of the laser locking frequency in the same mobile environment before and after the vibration isolation system installation was also found to be greatly improved. The reliability of the vibration isolation system was confirmed by good results of the analysis of the LIDAR data, in particular the plane position indicator of the line of sight velocity and the wind profile.

A Study for Assessing Exposure to Musculoskeletal Disorders Risk Factors among the Cooking & Housekeeping Jobs in Hotel work using PATH Method (PATH 기법을 이용한 숙박업 요리직과 청소직의 근골격계질환 유해요인 노출평가에 관한 연구)

  • Kim, Day-Sung;Park, Jung-Keun;Han, Young-Sun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.83-89
    • /
    • 2009
  • This study was conducted to assess exposure to musculoskeletal disorders risk factors in the cooking & housekeeping jobs in hotel work. PATH (posture, activity, tools and handling) method was used for data collection at the 6 hotel settings in different regions across Korea. From 26 workers, a total of 949 PATH observations were obtained. The highest percent time on non-neutral posture was 78% for pinch grip, followed by 74%(wrist deviation), 52%(trunk posture), 37%(shoulder/arm posture), and 30%(neck posture). The highest percent time in the three HAL variables was 47% for HAL-cat2. The percent time of items in relation to both loads with more than 5kg and contact stress was less than 2%. The hotel workers were not exposed to vibration.

Study on the Characteristics of a Dash System Based on Test and Simulation for Vehicle Noise Reduction (승용차량의 소음저감을 위한 시험과 시뮬레이션을 이용한 대시 시스템의 특성 연구)

  • Yoo, Ji Woo;Chae, Ki-Sang;Cho, Jin Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1071-1077
    • /
    • 2012
  • Low frequency noises(up to about 200 Hz) such as booming are mainly caused by particular modes, and in general the solutions may be found based on mode controls where conventional methods such as FEM can be used. However, at higher frequencies between 0.3~1 kHz, as the number of modes rapidly increases, radiation characteristics from structures, performances of damping sheets and sound packages may be more crucial rather than particular modes, and consequently the conventional FEM may be less practical in dealing with this kinds of structure-borne problems. In this context, so-called 'mid-frequency simulation model' based on FE-SEA hybrid method is studied and validated to reduce noise in this frequency region. Energy transmission loss(i.e. air borne noise) is also studied. A dash panel component is chosen for this study, which is an important path that transmits both structure-borne and air borne energies into the cavity. Design modifications including structural modifications, attachment of damping sheets and application of different sound packages are taken into account and the corresponding noise characteristics are experimentally identified. It is found that the dash member behaves as a noise path. The damping sheet and sound packages have similar influences on both sound radiation and transmission loss. The comparison between experiments and simulations shows that this model could be used to predict the tendency of noise improvement.

Compatibility Relationship of Transfer Function Parameters of Structures (구조물 전달함수 매개변수의 구성조건 관계)

  • Chai, Jangbom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.168-175
    • /
    • 1996
  • The measured vibration on a machine or a structure is shaped by the excitation waveform and the path transfer function. Mechanism diagnostics tends to focus on retrieving source features by minimizing the effects of the structiral path, while in structural diagnostics we are more interested in minimizing source effects and retrieving path parameters. In structural diagnostics, therefore, there are experimental issues of gathering date that are independent source effects and finding a transfer function signature that reveals structural defects. This paper describes how the transfer function can be obtained more accurately by experiment using the compatibility relationship which is newly discovered.

  • PDF

A Study on Cutting Characteristics According to Cutting Direction in Ball-End Milling (볼 엔드밀 가공시 공구경로에 따른 절삭특성에 관한 연구)

  • Cho, Byoung-Moo;Lee, Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.191-197
    • /
    • 2007
  • Inclined surface milling in the mould and die industries is one of the most commonly needed cutting process. For the variety and complexity of cutting characteristics in various cutting condition, it is difficult to select a optimal tool path orientation. Especially, when the cutting process becomes unstable, it induces self-exited vibrations, a frequent cause of poor tool life, rough surface finish, damage to the workpiece and the machine tool itself, and excessive down time. The comparative results through FFT analysis in this study provide a guideline for the selection tool path orientation.