• Title/Summary/Keyword: Vibration loads

Search Result 841, Processing Time 0.027 seconds

Numerical Analysis Study on Damping Performance of Cable Damper (케이블댐퍼 감쇠성능의 수치해석적 연구)

  • Yhim, Sung-Soon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • Compared with a strong axial rigidity due to large intial tension, cable has a weak laterally flexural rigidity. A variety of dynamic loads such as traffic loads and wind loads etc. cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables. Therefore, vibration reduction design is an urgent task to control the vibration of cable-supported bridges. Because a various kind of dampers have shown to reduce the amplitude and duration time of vibration of cable from measured date in field test, damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable. Vibration characteristics of cable can change according to manufacturing method and type of established form, and damper has been designed according to distribution of natural frequencies and vibration modes. In this study, numerical analysis is used to show the reduction effects of vibrations and present the design of damper for vibration reduction of cable.

Parameter Analysis and Modeling of Walking Loads (보행하중의 매개변수 분석 및 모형화)

  • 이동근;김기철;최균효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.459-466
    • /
    • 2001
  • The floor vibration aspect for building structures which are in need of large open space are influenced by the interrelation between natural frequency and working loads. Structures with a long span and low natural frequency have a higher possibility of experiencing excessive vibration induced by dynamic excitation such as human activities. These excessive vibrations make the residents uncomfortable and the serviceability deterioration. Need formulation of loads data through actual measurement to apply walking loads that is form of dynamic load in structure analysis. The loads induced by human activities were classified into two types. First type is in place loads. the other type is moving loads. A series of laboratories experiments had been conducted to study the dynamic loads induced by human activities. The earlier works were mainly concerned to parameters study of dynamic loads. In this Paper, the walking loads have been directly measured by using the measuring plate in which two load cells were placed, the parameters, the load-time history of walking loads, and the dynamic load factors have been analyzed. Moreover, the shape of the harmonic loads which were gotten by decomposition the walking loads have been analyzed , and the walking loads modeling have been carried out by composition these harmonic loads derived by functional relation.

  • PDF

Conformable solution of fractional vibration problem of plate subjected to in-plane loads

  • Fadodun, Odunayo O.;Malomo, Babafemi O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.347-354
    • /
    • 2019
  • This study provides an approximate analytical solution to the fractional vibration problem of thin plate governing anomalous motion of plate subjected to in-plane loads. The method of variable separable is employed to transform the fractional partial differential equations under consideration into a fractional ordinary differential equation in temporal variable and a bi-harmonic plate equation in spatial variable. The technique of conformable fractional derivative is utilized to solve the resulting fractional differential equation and the approach of finite sine integral transform method is used to solve the accompanying bi-harmonic plate equation. The deflection field which measures the transverse displacement of the plate is expressed in terms of product of Bessel and trigonometric functions via the temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem of thin plate in literature. This work shows that conformable fractional derivative is an efficient mathematical tool for tracking analytical solution of fractional partial differential equation governing anomalous vibration of thin plates.

Evaluation of the Performance Test Load through the Estimation of Vertical Loads on Vibration-Proof Fastening Systems (방진체결장치에 작용하는 수직하중 평가를 통한 성능시험하중 평가)

  • Yang, Sin Chu
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.777-784
    • /
    • 2016
  • In this study, regulation of the performance test load of a vibration-proof fastening system used in urban railways was established through evaluation of the loads that it bears in the field. In order to investigate the range of the dynamic stiffness of the vibration-proof fastening system, dynamic stiffness tests were carried out for three types of vibration-proof fastening system that can be domestically supplied. Train and track interaction analyses in the frequency domain were carried out to evaluate the dynamic wheel loads. The track irregularity, which is a very important input factor in train and track interaction analysis, was considered as a PSD (Power Spectral Density) function, which was derived based on the measured data. The loads on the vibration-proof rail fastening system were evaluated considering various operating conditions in the urban railway. Regulation of the performance test load of the vibration-proof rail fastening system was established based on the evaluated loads.

Application of Equivalent Walking Loads for Vibration Analysis of Building Floor Subjected to Footstep Loadings (보행하중을 받는 건축물 바닥판의 진동해석을 위한 등가 보행하중의 적용)

  • 김기철;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.35-45
    • /
    • 2001
  • Recently, the floor systems those require large open space may have low inherent damping due to the decline of the use of curtain walls. Furthermore, the use of the high strength materials has resulted in more flexible and longer spanning in floor systems. The long span structures such as shopping malls, offices and large assembly rooms may lead to significant dynamic response due to human activities. Excessive vibrations make the occupants uncomfortable and deteriorate the serviceability of buildings. It is now proved that footfall loading is the major source of floor vibrations. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict measured walking loads and periodic function at a node. But this method could not account for the moving effect of walking. In this study, natural frequency and damping ratio of example structure are evaluated by heel drop tests. And the application of equivalent walking loads is used for on efficient vibration analysis of the plate structures subjected to walking loads.

  • PDF

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

A study on the characteristics of Vibration Reduction Type Disk bearing in Station of Rapid Transit Railway (역사 내 진동저감형 디스크 받침 특성에 관한 연구)

  • Park, Tae-Hyun;Park, Hean-Sang;Kim, Ho-Bae;Choi, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.297-302
    • /
    • 2011
  • Railway construction in the random vibration natural phenomena, as well as a relatively regular train loads for dynamic loads, such as a usability and safety should be ensured. Vibration due to train loads and seismic vibrations caused by wind compared to the typically very small in size, rather than the safety of the structure affects the usability. Recently in the downtown area, ground and underground facilities, such as a permanent facility that may cause excessive vibration increases, associated with the construction of these transportation facilities on ground vibrations of structures has been increasing concern and complaint. More recently, high-speed train vibration and noise due to furnace is increasing. In order to solve this problem, such as soundproof considering several feet, but by applying the vibration and noise reduction measures insufficient for the study is Free. In this study, track structure, track, and the inside of the building to support the system, the different forms of neurological history and share about the history cheonanahsan high-speed rail, if passed by the bus stop on the train loads of noise, and the history of interior noise and vibration measurement / analysis of measurement results to assess the relative comparison with the relevant provisions were reviewed. Based on this history, future plans for the design of the bridge to reflect the results of a study is intended to provide information. Waiting for the analysis of vibration and noise reduction, cheonanahsan history passed quietly in the train, on average, appeared to 67.53dB and 65.41dB nervous week on average, were measured with the history. Nervous week waiting room of history and the history cheonanahsan radically different shapes and sizes, so a direct comparison is impossible, but the vibration caused by the disc on the base of the polyurethane elastomer disk is not supported by GERB SYSTEM Waiting more effective in reducing the noise level considered in The main materials for railway and for the localization will help to ensure affordability is considered.

  • PDF

Application of Response Spectrum Method for Analysis of a Floor System Subjected to Dynamic Loads on Multiple Locations (복수 절점에 가진되는 건물 바닥판의 해석을 위한 응답스펙트럼 해석법의 응용)

  • 김태호;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.21-32
    • /
    • 2002
  • In general, the response spectrum analysis method (R.S.A) is widely used for seismic analysis of building structure. But, it is not common to apply R.S.A for the analysis of structural vibration caused by dynamic loads of equipments, machines and moving leads, etc. The time history analysis method(T.H.A) for the vibration analysis, compared with R.S.A, is very complex, difficult and time consuming. So the application of R.S.A, that is convenient to calculate maximum responses for structural vibration, is proposed in this study. At first, the procedure for the application of the R.S.A to calculate of the maximum vibration response induced by dynamic load applied on the single point is described. And then, the process, which can save the time and the memory for calculation of the maximum vibration response induced by dynamic loads on the multi-point is proposed, and the maximum structural response caused by moving loads are obtained. Lastly, the accuracy of the proposed method is verified by comparing the results of R.S.A to T.H.A for some example models.

Study on Vibration Fatigue Analysis of Automotive Battery Supporter (자동차 배터리 지지 구조의 진동 피로 해석에 대한 연구)

  • Ah, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.22-27
    • /
    • 2019
  • In this paper, the vibration load and analysis results for automotive battery supporter were performed to provide efficient vibration tolerance performance prediction methods for single-product vibration tolerance testing, and the major influencing factors and considerations for setting up single-unit vibration tolerance tests were reviewed. A common applicable standard load was applied to efficiently predict the performance of single-unit vibrations through the frequency response analysis technique. The results similar to test results can be predicted by checking vulnerable parts of the vehicle components for vibration loads and applying scale factor to standard loads. In addition, it was confirmed that the test conditions with a frequency generating the same durability severity as the endurance test are needed for accurate prediction of the durability of the single-unit vibration tolerance test conditions, and the acceleration and frequency with the conditions that there is no significant nonlinear phenomena in the vibration system are established during the single-unit vibration tolerance test conditions.

Comparison of mass operator methods considering test uncertainties

  • Olympio, K.R.;Blender, F.;Holz, M.;Kommer, A.;Vetter, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.277-294
    • /
    • 2018
  • In the space industry, structures undergo several vibration and acoustic tests in order to verify their design and give confidence that they will survive the launch and other critical in-orbit dynamic scenarios. At component level, vibration tests are conducted with the aim to reach local or global interface loads without exceeding the design loads. So, it is often necessary to control and limit the input based on a load criterion. This means the test engineer should be able to assess the interface loads, even when load cannot be measured. This paper presents various approaches to evaluate interface loads using measured accelerations and by referring to mass operators. Various methods, from curve fitting techniques to finite element-based methods are presented. The methods are compared using signals with known imperfection to identify strengths and weaknesses of each mass operator definition.