• Title/Summary/Keyword: Vibration in Ship

Search Result 418, Processing Time 0.028 seconds

Improvement of Sound Transmission Loss of Ship's Bulkhead at Low Frequency Range (선박 격벽의 저주파수 대역 차음성능 향상에 관한 연구)

  • Kim, Sung-Hoon;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.167-168
    • /
    • 2009
  • The noise sources in ship and offshore structure have an influence on adjacent receiving area through a partition between noise sources and receiving area. The partition in ship is usually made of stiffened plate. Sound transmission loss (STL) of the partition at high frequency could be improved by additional installation of insulation or wall panel. At low frequency, however, it is very difficult and needs an increase of plate thickness which causes a considerable weight increase of ship. In this paper, we have investigated the effect of the bulkhead boundary condition. From measurement result, we found that the bulkhead boundary condition can affect a lot in STL, especially at low frequency range. Finally, we get the 5dB increase in STL through the modification of boundary condition.

  • PDF

Development of the Anti-vibration Base for the Onboard Equipment of the Naval Vessel Using Sandwitch Panel (샌드위치 패널을 이용한 함정탑재장비용 방진 베이스 개발)

  • Han, HyungSuk;Lee, KyoungHyun;Park, SungHo;Wi, YangHyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.365-374
    • /
    • 2016
  • The underwater radiated noise can be reduced by decreasing the structure borne noise of the on-board equipment. Therefore, the structure borne noise of the onborad installed equipment is strongly restricted by ROK navy with MIL-Std 740-2. Usually, the vibration transmissibility from the equipment to the hull of the ship is dependent on its mount characteristics. Even though the double mount structure is proper to apply for ship board application rather than single mount, it is not widely applied due to the weight and volume resriction of the ship. Therefore, in this research, the base using sandwitch panel which can act as double mount structure is suggested and its noise reduction capacity is verified with analytic calculation as well as experiment.

A Study on the Prediction and Database Program of Ship Noise (선박소음예측 및 데이터베이스 프로그램 개발)

  • 박종현;김동해
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.149-154
    • /
    • 2001
  • Ship owners are demanding quieter vessels since crews have become more sensitive to their acoustic environment. Accordingly, designers of shipyards need to respond intelligently to the challenging requirements of delivering a quiet vessel. In early design stage, to predict shipboard noise the statistical approach is preferred to other methods because of simplicity. However, since the noise characteristics of the ships vary continuously with the environments, it is necessary to update the prediction formula with data base management system. This paper describes the feature of database program with the prediction method. Database management programs with GUI, are applied to Intranet system that is accessible by any users. Statistical approach to the prediction of A-weighted noise level in ship cabins, based on multiple regression analysis, is conducted. The noise levels in ship cabins are mainly affected by the parameters of the deadweight, the type of ship, the relative location of engines and cabins, the type of deckhouse, etc. As a result of verification, the formulas ensure the accuracy of 3 ㏈ in 83 % of cabins.

  • PDF

Dynamic stiffness analysis of steel-concrete composite beams

  • Li, Jun;Huo, Qiji;Li, Xiaobin;Kong, Xiangshao;Wu, Weiguo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.577-593
    • /
    • 2014
  • An exact dynamic stiffness method is introduced for investigating the free vibration characteristics of the steel-concrete composite beams consisting of a reinforced concrete slab and a steel beam which are connected by using the stud connectors. The elementary beam theory is used to define the dynamic behaviors of the two beams and the relative transverse deformation of the connectors is included in the formulation. The dynamic stiffness matrix is formulated from the exact analytical solutions of the governing differential equations of the composite beams in undamped free vibration. The application of the derived dynamic stiffness matrix is illustrated to predict the natural frequencies and mode shapes of the steel-concrete composite beams with seven boundary conditions. The present results are compared to the available solutions in the literature whenever possible.

A Study on the Reduction of Noise and Vibration in Ship Cabins by Using floating Floor (뜬바닥구조를 이용한 선박 격실의 소음.진동 저감에 관한 연구)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.949-957
    • /
    • 2006
  • In this Paper, reduction of noise and vibration in ship cabins by using floating floor is studied. Two theoretical models are presented and predicted insertion losses of floating floor are compared to experimental results, where measurements have been done in mock-up built for simulating typical ship cabin structures. In ships, mineral wool is usually used as the impact absorbing materials. The first model (M-S-Plate Model) is that upper plate and mineral wool are assumed as a one-dimensional mass-spring system, which is in turn attached to the simply supported elastic floor. The second model (Wave-Plate Model) is that mineral wool is assumed as an elastic medium for wave propagation. The comparisons show that M-S-Plate model is in good agreement with experimental results when density of mineral wool is 140K, and fiber direction is horizontal. For higher density and vertical fiber direction, Wave-Plate model shows good agreements with measurements. It is found that including the elastic behavior of the floor is essential in improving accuracy of the prediction for low frequency ranges below $100{sim}200Hz$.

Statistical Investigation on Airborne Noise Levels of Navy Shipboard Compartments (함정의 격실 소음도에 관한 통계적 조사 연구)

  • 김종철;박일권;조대승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.637-644
    • /
    • 2003
  • Airborne noise is one of the considerable environmental factors for navy ship personnel who should accomplish their tasks in restricted ship spaces against adverse health effect of noise. However, it is difficult to find studies on actual condition of airborne noise for navy ships. In this study, we measured airborne noise levels at 379 compartments of 33 Korean navy ships. Using the measured data, we presented mean values and their standard deviations of measured noise levels with factors of ship type, compartment category, and operation mode. Additionally, we evaluated the mean value and cumulative probability of airborne noise levels of compartments with those of the US navy ships. These results can be rationally used in making the proper airborne noise criteria of the navy ship for the future.

Quadratic strip theory for high-order dynamic behavior of a large container ship with 3D flow effects

  • Heo, Kyeong-uk;Koo, Weoncheol;Park, In-Kyu;Ryue, Jungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.127-136
    • /
    • 2016
  • Springing is the resonance phenomenon of a ship hull girder with incoming waves having the same natural frequency of the ship. In this study, a simple and reliable calculation method was developed based on quadratic strip theory using the Timoshenko beam approach as an elastic hull girder. Second-order hydrodynamic forces and Froude-Krylov forces were applied as the external force. To improve the accuracy of the strip method, the variation in the added mass along the ship hull longitudinal direction, so called tip-effect, was considered. The J-factor was also employed to compensate for the effect of three-dimensional fluid motion on the two-node vibration of the ship. Using the developed method, the first- and second-order vertical bending moments of the Flokstra ship were compared. A comparative study was also carried out for a uniform barge ship and a 10,000 TEU container ship with the respective methods including the J-factor and tip-effect.

Analysis for Reducing Vibration Transmitted from the Sea-Water Conveying Pipe to the Hull (선체로 전달되는 해수 이송 배관의 진동 저감 분석)

  • Han, Hyung-Suk;Park, Mi-Yoo;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.145-151
    • /
    • 2008
  • URN(Underwater Radiated Noise) is one of the important performances of the battle ship related to the stealth. The main source of the URN is the structure-borne noise on the hull. And the pipe vibration transmitted to the hull is the main source of the structure-borne noise when the speed of the ship is lower than CIS(Cavitation Inception Speed). In this paper, the vibration isolator(rubber mount) for the pipe system is described in order to reduce the structure-borne noise transmitted to the hull. The vibrations on the sea-water conveying pipes and their supports are measured in order to know how much vibration occurs on those positions. Based on these test results, the improved design of the rubber mount is suggested by the parametric study and is verified numerically with the pipe and hull model.

  • PDF

Control of Deckhouse Vibration of a Container Ship due to Higher Order Inertial Excitation of Main Engine (주기관 고차 관성기진력에 의한 콘테이너선 선루진동의 제어)

  • Lee, Soo-Mok;Kim, Won-Hyun;Chung, Kyoon-Yang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.876-880
    • /
    • 2000
  • Vibration problem of deckhouse structure in a container vessel was investigated through the analysis and measurement. The natural frequency of deckhouse structure was found to be resonant with main engine 4th order excitations in the operating range, major sources of which were main engine inertial moment and axial thrust of the propulsion shafting system. To investigate and solve the problem, exciter test was performed to identify the vibration chracteristics of the ship structure and mechanical balancer was installed to compensate the 4th order inertial moment. Measurement results under the conditions with and without balancer operating were compared and analyzed to confirm the balancer effect. Good coincidence was found between the measurement and analysis results, which made it possible to predict the vibration problem in the earlier design stage.

  • PDF

A Study on the Vertical, Horizontal and Torsional Vibration of Ship(1st Report) (배의 상하(上下), 수평(水平) 및 비틂진동(振動)에 관(關)하여(제1보)(第1報) -Box형(型) Barge의 상하진동(上下振動)에 대(對)하여-)

  • Sa-Soo,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 1971
  • This paper describes, firstly, on analytical method of computing the eigenvalues of vertical vibration of ships, taking into account for the distribution of hull weight including added mass and the effect of shear deflection and rotary inertia. The frequency equation is solved by Galerkins method into form of numerical integration. Applying the above described equation, model experiment of vertical vibration was carried out in order to varify the validity of the analytical method of vertical vibration. The model, which was made of acrylite plate, was ship-shaped wall-sided vessel with bulkheads, deck openings, and fore and after peak tank at both ends. The results of experiments carried out both in air and on water showed that the observed natural frequencies and the observed patterns of natural modes of vibration were in good agreement with analytically calculated values for 2,3, and 4-node vibration.

  • PDF