• Title/Summary/Keyword: Vibration control structure

Search Result 970, Processing Time 0.022 seconds

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.

A Study on Stress and Deformation through Finite Element Analysis of 2NC Head Processing Controlling AC Axis during 5-Axis Cutting Machine Training in the 4th Industrial Revolution of Machine Tool System (공작기계의 4차 산업혁명에서 5축 절삭가공기 교육 중 AC축을 제어하는 2NC 헤드 가공상의 유한요소 해석으로 응력 및 변형에 관한 연구)

  • Lee, Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.13 no.2
    • /
    • pp.327-332
    • /
    • 2021
  • Materials used for education include SM20C, Al6061, and acrylic. SM20C materials are used a lot in certification tests and functional competitions as carbon steel, but they are also used in industrial sites. Al6061 is said to be a material that produces a lot of tools because it has lower hardness than carbon steel and is highly flexible. When practical guidance is given to students using acrylic materials, it is a material that causes vibration and tool damage due to excessive cutting. In this process, we examine how impact on the 5-axis equipment 2NC head can affect precision control. The weakest part of a five-axis equipment is the head that controls the AC axis. In the event of precision and cumulative tolerances in this area, the precision of all products is reduced. Thus, a key part of the 2NC head, the spindle housing was carried out using Al7075 T6 (U.S. Alcoasa) material and the entire body using FCD450 (spherical graphite cast iron). In the vibration and cutting process acting on these two materials, the analysis was carried out to determine the value of applying the force as a finite element analysis under extreme conditions. We hope that using these analytical data will help students see and understand the structure of 5-axis machining rather than 5-axis cutting.

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

Biomimetic Gyroscope Integrated with Actuation Parts of a Robot Inspired by Insect Halteres (평형곤을 모사한 생체모방형 구동부 일체형 각속도 센서)

  • Jeong, Mingi;Kim, Jisu;Jang, Seohyeong;Lee, Tae-Jae;Shim, Hyungbo;Ko, Hyoungho;Cho, Kyu-Jin;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.705-709
    • /
    • 2016
  • Micro-electro-mechanical systems (MEMS) gyroscopes are widely used in various robot applications. However, these conventional gyroscopes need to vibrate the proof mass using a built-in actuator at a fixed resonance frequency to sense the Coriolis force. When a robot is not moving, the meaningless vibration of the gyroscope wastes power. In addition, this continuous vibration makes the sensor vulnerable to external sound waves with a frequency close to the proof-mass resonance frequency. In this paper, a feasibility study of a new type of gyroscope inspired by insect halteres is presented. In dipterous insects, halteres are a biological gyroscope that measures the Coriolis force. Wing muscles and halteres are mechanically linked, and the halteres oscillate simultaneously with wing beats. The vibrating haltere experiences the Coriolis force if the insect is going through a rotational motion. Inspired by this haltere structure, a gyroscope using a thin mast integrated with a robot actuation mechanism is proposed. The mast vibrates only when the robot is moving without requiring a separate actuator. The Coriolis force of the mast can be measured with an accelerometer installed at the tip of the mast. However, the signal from the accelerometer has multiple frequency components and also can be highly corrupted with noise, such that raw data are not meaningful. This paper also presents a suitable signal processing technique using the amplitude modulation method. The feasibility of the proposed haltere-inspired gyroscope is also experimentally evaluated.

Laryngeal Findings and Phonetic Characteristics in Prelingually Deaf Patients (언어습득기 이전 청각장애인의 후두소견 및 음성학적 특성)

  • Kim, Seong-Tae;Yoon, Tae-Hyun;Kim, Sang-Yoon;Choi, Seung-Ho;Nam, Soon-Yuhl
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Background and Objectives : There are few studies reported that specifically examine the laryngeal function in patients with profound hearing loss or deafness, This study was designed to examine videostroboscopic findings and phonetic characteristics in adult patients with prelingually deaf. Materials and Method: Sixteen patients (seven males, nine females) diagnosed as prelingually deaf aged from 19 to 54 years, and were compared with a 20 normal control group with no laryngeal pathology and normal hearing group, Videostroboscopic evaluations were rated by experienced judges on various parameters describing the structure and function of the laryngeal mechanism during comfortable pitch and loudness phonations. Acoustic analysis test were done, and a nasalance test performed to measure rabbit, baby, and mother passage. CSL were measured to determine the first and two formant frequencies of vowels /a/, /i/, /u/, Statistical analysis was done using Mann-Whitney U or Wilcoxon signed ranks test. Results: Videostroboscopic findings showed phase symmetry but significantly more occurrences decrement in the amplitude of vibration, mucosal wave, irregularity of the vibration and increased glottal gap size during the closed phase of phonation, In addition, group of prelingually deaf patients were observed to have significantly more occurrences of abnormal supraglottic activities during phonation. The percentage of shimmer in the group of prelingually deaf patients were higher than in the control group. Characteristics of vowels were lower of the second formant of the vowel /i/. Nasalance in prelingually deaf patients showed normal nasality for all passages, Conclusion: Prelingually deaf patients show stroboscopic abnormal findings without any mucosal lesion, suggesting that they have considerable functional voice disorder. We suggest that prelingually deaf adults should perform vocal training for normalized laryngeal function after cochlear implantation.

  • PDF

Vibration Control of Structures Using Viscoelastic Dampers Installed in Expansion Joints (신축이음부에 설치된 점탄성감쇠를 이용한 구조물의 진동제어)

  • Kim, Jin-Koo;Ryou, Jin-Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.33-42
    • /
    • 2004
  • The usual practice of placing viscoelastic dampers (VED) in the inter-story of building structures frequently interfere with spatial planning and obstruct internal view. These shortcomings can be overcome by installing VED in seismic joints or in expansion joints which are usually hidden under a cover. This study investigates the effect of installing VED in seismic joints to reduce earthquake-induced dynamic reponses. Parametric studies were conducted using 3-DOF systems connected by VED and subjected to earthquake excitations to investigate the effectiveness of the proposed scheme. Nonlinear dynamic analyses were carried out with five-story structures composed of different structure systems and connected by seismic joints. According to the analysis results the use of VED in seismic joints turned out to be effective as long as the natural frequencies of the connected structures are different enough.

A Study on the Anomaly Prediction System of Drone Using Big Data (빅데이터를 활용한 드론의 이상 예측시스템 연구)

  • Lee, Yang-Kyoo;Hong, Jun-Ki;Hong, Sung-Chan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.27-37
    • /
    • 2020
  • Recently, big data is rapidly emerging as a core technology in the 4th industrial revolution. Further, the utilization and the demand of drones are continuously increasing with the development of the 4th industrial revolution. However, as the drones usage increases, the risk of drones falling increases. Drones always have a risk of being able to fall easily even with small problems due to its simple structure. In this paper, in order to predict the risk of drone fall and to prevent the fall, ESC (Electronic Speed Control) is attached integrally with the drone's driving motor and the acceleration sensor is stored to collect the vibration data in real time. By processing and monitoring the data in real time and analyzing the data through big data obtained in such a situation using a Fast Fourier Transform (FFT) algorithm, we proposed a prediction system that minimizes the risk of drone fall by analyzing big data collected from drones.

The turbulent wake of a square prism with wavy faces

  • Lin, Y.F.;Bai, H.L.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Aerodynamic effects, such as drag force and flow-induced vibration (FIV), on civil engineering structures can be minimized by optimally modifying the structure shape. This work investigates the turbulent wake of a square prism with its faces modified into a sinusoidal wave along the spanwise direction using three-dimensional large eddy simulation (LES) and particle image velocimetry (PIV) techniques at Reynolds number $Re_{Dm}$ = 16,500-22,000, based on the nominal width ($D_m$) of the prism and free-stream velocity ($U_{\infty}$). Two arrangements are considered: (i) the top and bottom faces of the prism are shaped into the sinusoidal waves (termed as WSP-A), and (ii) the front and rear faces are modified into the sinusoidal waves (WSP-B). The sinusoidal waves have a wavelength of $6D_m$ and an amplitude of $0.15D_m$. It has been found that the wavy faces lead to more three-dimensional free shear layers in the near wake than the flat faces (smooth square prism). As a result, the roll-up of shear layers is postponed. Furthermore, the near-wake vortical structures exhibit dominant periodic variations along the spanwise direction; the minimum (i.e., saddle) and maximum (i.e., node) cross-sections of the modified prisms have narrow and wide wakes, respectively. The wake recirculation bubble of the modified prism is wider and longer, compared with its smooth counterpart, thus resulting in a significant drag reduction and fluctuating lift suppression (up to 8.7% and 78.2%, respectively, for the case of WSP-A). Multiple dominant frequencies of vortex shedding, which are distinct from that of the smooth prism, are detected in the near wake of the wavy prisms. The present study may shed light on the understanding of the underlying physical mechanisms of FIV control, in terms of passive modification of the bluff-body shape.

A Study on the DBS Receive Tracking Antenna Apparatus on a Ship by the Az/El Mount (Az/El 마운트에 의한 선박용 DBS 수신추적안테나 장치에 관한 연구)

  • 최조천;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.209-220
    • /
    • 1997
  • DBS offers actual services to mass-media and communication system of very broad region in information society. Especially, the DBS is the only system to access TV broadcasting service on a sailing ship. But the ship's DBS receiver is required a complex antenna tracking system because ships are under complex moving such as pitch, roll, and yaw etc. This study is motivated to develop a tracking antenna system to receive the koreasat on small silo ship. Therefore, this system is researched to small size, light weight, simple operation, and low cost of the product. The mount structure have been a compact size and easy operation to the Az/El 2-axis type which is operated by step motor. And it is very useful on a ship in the around sea of korean peninsula. The antenna has a plate type of micro-strip array, and is a domestic production. The vibration sensor is selected to gyro sensor of ultra-sonic rate type for ship's moving control. Tracking method is used the step-tracking algorithm, and the ship's moving compensation is adapted to the closed loop control method by ship's moving detection of gyro sensor. Tracking test is operated by the ship's moving simulator, we examined the actual receiving state on sailing shipboard in the near sea of korean peninsular.

  • PDF

LRB-based hybrid base isolation systems for cable-stayed bridges (사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, Billie-F.Jr.;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.63-76
    • /
    • 2004
  • This paper presents LRB-based hybrid base isolation systems employing additional active/semiactive control devices for mitigating earthquake-induced vibration of a cable-stayed 29 bridge. Hybrid base isolation systems could improve the control performance compared with the passive type-base isolation system such as LRB-installed bridge system due to multiple control devices are operating. In this paper, the additional response reduction by the two typical additional control devices, such as active type hydraulic actuators controlled by LQG algorithm and semiactive-type magnetorheological dampers controlled by clipped-optimal algorithm, have been evaluated bypreliminarily investigating the slightly modified version of the ASCE phase I benchmark cable-stayed bridge problem (i.e., the installation of LRBs to the nominal cable-stayed bridge model of the problem). It shows from the numerical simulation results that all the LRB based hybrid seismic isolation systems considered are quite effective to mitigate the structural responses. In addition, the numerical results demonstrate that the LRB based hybrid seismic isolation systems employing MR dampers have the robustness to some degree of the stiffness uncertainty of in the structure, whereas the hybrid system employing hydraulic actuators does not. Therefore, the feasibility of the hybrid base isolation systems employing semiactive additional control devices could be more appropriate in realfor full-scale civil infrastructure applications is clearly verified due to their efficacy and robustness.