• Title/Summary/Keyword: Vibration actuator

Search Result 977, Processing Time 0.03 seconds

Fabrication of Ultra-Small Multi-Layer Piezoelectric Vibrational Device Using P(VDF-TrFE-CFE) (P(VDF-TrFE-CFE)를 이용한 초소형 압전 적층형 진동 출력 소자의 제작)

  • Cho, Seongwoo;Glasser, Melodie;Kim, Jaegyu;Ryu, Jeongjae;Kim, Yunjeong;Kim, Hyejin;Park, Kang-Ho;Hong, Seungbum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.157-160
    • /
    • 2019
  • P(VDF-TrFE-CFE) (Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)), which exhibits a high electrostriction of about 7%, can transmit tactile output as vibration or displacement. In this study, we investigated the applicability of P(VDF-TrFE-CFE) to wearable piezoelectric actuators. The P(VDF-TrFE-CFE) layers were deposited through spin-coating, and interspaced with patterned Ag electrodes to fabricate a two-layer $3.5mm{\times}3.5mm$ device. This layered structure was designed and fabricated to increase the output and displacement of the actuator at low driving voltages. In addition, a laser vibrometer and piezoelectric force microscope were used to analyze the device's vibration characteristics over the range of ~200~4,200 Hz. The on-off characteristics were confirmed at a frequency of 40 Hz.

Evaluation of Fatigue Endurance on Expansion Joint Manufactured Fe-Mn Damping Alloy (Fe-Mn 제진 금속을 적용한 신축이음장치의 피로 내구성 평가)

  • Kim, Ki-Ik;Kim, Young-Jin;Ahn, Dong-Geun;Kim, Cheol-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.483-489
    • /
    • 2009
  • The endurance of expansion joint manufactured the Fe-Mn damping alloy reducing noise and vibration is analyzed into FEM (Finite Element Method) and fatigue test. The fatigue test have been performed using the expansion joint manufactured Fe-Mn damping alloy and the hydraulic actuator (25tonf). And the results of fatigue test show that the maximum strength is 237.6 MPa. Also that is 56.6 percent of Fe-Mn damping alloy yield strength (420 MPa). The loading plate size is prepared $57.7cm{\times}23.1cm$ and the loading plate's set position is located on expansion joint. The expansion joint manufactured the Fe-Mn damping alloy had not presented breaking behavior against 2,000,000 times fatigue test and identified the fatigue endurance.

Assessment of the Seismic Capacity of Structure Using Pseudodynamic Test (유사동적 실험법을 이용한 구조물의 내진 성능 평가)

  • 김대곤;김대영;안재현;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.49-57
    • /
    • 1997
  • It is necessary to conduct researches about seismic design and analysis to protect various structures from earthquakes which are one of the most destructive natural disaster to human civilization. To assess the seismic capacity of structure, not only analytical but also experimental researches are important. Currently, pseudodynamic test known as computer-actuator on-line test is one of the available test methods to assess seismic capacity of structure without using shaking table. In this paper seismic capacity of simple one-degree of freedom structure was estimated by pseudodynamic test. Good agreement between the experimental and analytical results was obtained. Better results would be obtained when more sophisticated measuring and controlling instruments are available.

  • PDF

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

Robust Sliding Mode Controller Design for the Line-of-Sight Stabilization

  • Kim, Moon-Sik;Yun, Jung-Joo;Yoo, Gi-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.614-619
    • /
    • 2004
  • The line-of-sight (LOS) stabilization system is a precision electro-mechanical gimbals assembly for rejecting vibration to isolate the load from its environment and point toward the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. To generate movement commands for the actuators in the stabilization system, the control system uses a sensor of angular rotation. The controller is a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated using the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. And SMCPE (sliding mode control with perturbation estimation) is used to control the gimbals. SMCPE provides robustness of the control against the modeling deficiencies and unknown disturbances. In order to compare the performance of SMCPE with the classical SMC, a sample test result is presented.

  • PDF

A Experimental Study to Diagnose of Air Operated Valve (공기구동 밸브 진단을 위한 동적특성의 실험적 고찰)

  • Yang S.M.;Hong S.D.;Song D.S.;Park J.K.;Shin S.K.;Lee H.Y.;Yang S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1766-1769
    • /
    • 2005
  • Air-operated valve(AOV) is one of principal valves that are using to control fluid flow in nuclear power plants. AOV is suffered from damage and malfunction by the abrasion, corrosion and vibration of valve parts under the long time operation. This mechanical trouble and malfunction of valve is critical for the safety of power plant. So a periodic diagnosis for safety of power plants is inevitable to guarantee the safety of the power plant. But depending on the type of the actuator and valve body, various types of AOV exist. In this study, It is developed the diagnostic system that users of power plants are easy to handle in this paper.

  • PDF

Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator (3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

Extension of the LQR to Accomodate Actuator Saturation Bounds for Flexible Space Structures (제한된 제어입력을 갖는 유연우주구조물에 대한 확장된 LQR)

  • Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.71-77
    • /
    • 2002
  • We consider the simultaneous slewing and vibration suppression control problem of an idealized structural model which has a rigid hub with two cantilevered flexible appendages and finite tip masses. The finite clement method(FEM) is used to obtain linear finite dimensional equations of motion for the model. In the linear quadratic regulator(LQR) problem, a simple method is introduced to provide a physically meaningful performance index for space structure models. This method gives us a mathematically minor but physically important modification of the usual energy type performance index. A numerical procedure to solve a time-variant LQR problem with inequality control constraints is presented using the method of particular solutions.

A Vibrotactile Display for Hand-held Devices and Its Preferable Pattern Generation Method (모바일 기기를 위한 진동촉각 디스플레이와 선호하는 패턴 생성방법)

  • Yang, Gi-Hun;Jin, Yeonsub;Kang, Sungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.795-800
    • /
    • 2014
  • In this paper, a vibrotactile pad system, T-mobile, is developed to provide vibrotactile cues for hand-held devices. A grooved and slim design is adapted to the back-side plane of the T-mobile, and the contact part consists of 12 vibrotactile panels which can operate independently and separately. To be isolated among vibrotactile actuators, the surface of the cover is divided into several pieces. Each vibrating module consists of a linear resonant actuator, a section of covering surface, and a vibration isolator. In order to provide spatial and directional information, sensory saltation and phantom sensation are applied to the T-mobile. To evaluate the developed device, two experiments were conducted to test whether directional information and spatial information can be successfully displayed by the device. Additionally, in order to find optimal stimulation by sensory saltation, an empirical test was conducted. As a result, spatial and directional information would be useful for displaying intuitive information for hand-held devices with vibrotactile feedback and reasonable near-optimal value for sensory saltation was obtained.