• 제목/요약/키워드: Vibration actuator

검색결과 977건 처리시간 0.027초

PZT actuator를 이용한 외팔보의 능동진동제어 (Active control of vibration of cantilever beams using PZT actuators)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.247-252
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

  • PDF

보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구 (Effect of Piezoactuator Length Variation for Vibration Control of Beams)

  • 이영섭
    • 한국소음진동공학회논문집
    • /
    • 제18권11호
    • /
    • pp.1185-1191
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against the beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback(DVFB) control strategy is not clearly defined so far. It is well known that DVFB control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated Pairs of piezoelectric actuators (20, 50 and 100 mm long) and accelerometers installed on three identical clamped-clamped beams($30{\times}20{\times}1mm$). The response of each sensor-actuator pair requires strictly positive real(SPR) property to apply a high feedback gain. However the length of the piezoactuator affects the SPR property of the sensor-actuator response. Intensive simulation and experiment show the effect of the actuator length variation is strongly related with the frequency range of the SPR property. Thus an optimal length ratio was suggested to obtain relevant performance with a good stability under the DVFB strategy.

PZT Actuator를 이용한 외팔보의 능동진동제어 (Active Vibration Control of Cantilever Beams Using PZT Actuators)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1293-1300
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구 (Effect of Piezoactuator Length Variation for Vibration Control of Beams)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.442-448
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback (DVFB) control strategy is not clearly defined so far. It is well known that direct velocity feedback (DVFB) control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated pairs of piezoelectric actuators (20, 50 and 100 mm) and accelerometers installed on three identical clamped-clamped beams (300 * 20 * 1 mm). The response of each sensor-actuator pair requires strictly positive real (SPR) property to apply a high feedback gain. However the length of the piezoactuator affects SPR property of the sensor-actuator response. Intensive simulation and experiment shows the effect of the actuator length variation is strongly related with the frequency range of SPR property. A shorter actuator gave a wider SPR frequency range as a longer one had a narrower range. The shorter actuator showed limited control performance in spite of a higher gain was applied because the actuation force was relatively small. Thus an optimal length ratio (actuator length/beam length) was suggested to obtain relevant performance with good stability with DVFB strategy. The result of this investigation could give important information in the design of active control system to suppress unwanted vibration of smart structures with piezoelectric actuators and accelerometers.

  • PDF

MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화 (Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology)

  • 김민규;정용섭;조진호
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.

PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계 (Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film)

  • 황준석;목지원;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

전자석 액츄에이터에 의한 수동방진 테이블의 제어 (Vibration control of the vibration isolation system using the electromagnetic actuator)

  • 최현;이정윤
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.227-232
    • /
    • 2003
  • As the most precision equipment requiring very strict vibration environment are vulnerable to the surrounding vibration condition, they adapt the passive or active vibration isolation system. When it comes to the passive isolation system, the resonance of the isolation system causes excessive resonance response, and finally results in the degrade the equipment performance. This paper deals with the active control method to control this resonance induced response, and includes the experiment on the active control for controlling the resonance response on the table against the excitation of the same frequency with the natural frequency of the isolation system. The electromagnetic actuator was designed and the control effect was verified by the experiment. The experiment showed that the electromagnetic actuator is effective for controlling the low frequency isolation resonance response of the precision equipment.

  • PDF

유전자 알고리즘을 이용한 트랙킹 진동량 추정 시스템 (A Tracking Vibration Estimation System Using a Genetic Algorithm)

  • 진경복;이문노
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.25-30
    • /
    • 2011
  • This paper presents a tracking vibration estimation system of the track-following system using a tracking loop gain adjustment algorithm and a genetic algorithm. The algorithms are introduced to estimate accurately the tracking vibration quantity in spite of the uncertainties of the tracking actuator. An estimated actuator model can be found by applying a genetic algorithm. Accordingly, the tracking vibration quantity can be estimated from the measured tracking error, the tracking controller and the estimated actuator model. The proposed tracking vibration estimation method is applied to the track-following system of an optical recording device and is evaluated through the experimental result.

Linear Oscillatory Actuator를 이용한 구조물 진동의 능동제어연구 (Application of Linear Oscillatory Actuator to Active Structural Vibration Control)

  • 정태영;문석준;정종안;박희창;장석명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.248-254
    • /
    • 1996
  • In this paper active vibration control system using a linear oscillatory actuator (LOA) is studied to suppress structural vibration. Being compared with a hydraulic actuator, a LOA has simplified structure and requires a few elements, so it has lots of merits with respect to economics and maintenance. Performance test of active vibration control system using LOA is carried out on a steel test structure under base excitation. From this test it is confirmed that acceleration level of test structure is reduced near the resonance region. In the future research on the application to large to structures will be studied.

  • PDF

틸팅 액츄에이터의 동특성 해석 (Dynamic Analysis of a Tilting Actuator)

  • 임형빈;정진태;류재욱;방현철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.207-212
    • /
    • 2006
  • A dynamic analysis of a tilting actuator for projection TV is presented in this study. Generally, an excessive vibration of a tilting actuator is occurred a lowering of video quality of projection TV because of a dynamic unstability of it. Therefore, a dynamic analysis of a tilting actuator system is positively necessary. In this study, a mathematical model about a mirror-reactive type tilting actuator is presented and evidenced by experiment. A FEM model of a lens-transmissive type tilting actuator is presented and we made prototype of it. Then, it is evidenced by experiment. Besides, a design for hinge configuration of it is presented.

  • PDF