• Title/Summary/Keyword: Vibration absorption

Search Result 409, Processing Time 0.02 seconds

Performance of Absorption Diffuser Silencers (흡음형 디퓨저 소음기의 성능)

  • 정갑철;현승일;이종우;권영필
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.377-384
    • /
    • 1994
  • This paper is an investigation of the performance of absorption diffusers to suppress the vent noise emitted when high pressure gas is throttled. First, experiment for the static performance is carried out. When there is no through-flow, the insertion loss has been obtained in terms of 1/3 octave band spectrum and the effect of the number of diffusers and the thickness of the absorption material on the static performance has been obtained. And the similarity in the spectrum of the static insertion loss is confirmed by comparing two similar models with different size. Second, the dynamic performance has been obtained by experiment using blow-down of compressed air from a storage tank through an orifice of diameter 10 mm. The back pressure by the diffuser is measured and compared with that of a single diffuser. It is found that the insertion loss of asingle diffuser is very low around 3 dB at high frequencies with negative value at low frequencies. By absorption material between the diffuser tubes, however, the performance is increased considerably. Without flow the static insertion loss increases by 3 - 4 dB by doubling the thickness or the density of the absorptionmaterial. With flow, however, the dynamic insertion loss increases. While, the back pressure by the diffuser is small enough to be neglected.

  • PDF

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

Infrared Radiation Properties for SiO2 Films Made by Sol-Gel Process (졸-겔법으로 제조된 SiO2막의 적외선 복사특성에 관한 연구)

  • Kang, Byung-chul;Kim, Young-geun;Kim, Ki-ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.697-702
    • /
    • 2003
  • FT-IR and thermograph were used to investigate the infrared radiation characteristics of $SiO_2$film made by the sol-gel method. FT-IR spectrum of the $SiO_2$film showed high infrared absorption by Si-O-Si vibration at 1220, 1080, 800 and cm$460^{-1}$ The infrared absorption and radiation wavelength ranges of the $SiO_2$film measured by the integration method coincided with the reflection method, and the infrared emissivity was 0.65, equally. Depending on the bonding of elements, the infrared emissivity was high in the wavelength range where the infrared absorption rate was high, that follows the Kirchhoff's law. The emissivity showed the highest value in the wavelength range between $8∼10\mu\textrm{m}$. $SiO_2$film was considered as an efficient materials for infrared radiator at temperature below 10$0^{\circ}C$. The heat radiation temperature was $117^{\circ}C$ for the aluminum plate, but $146^{\circ}C$ for the $SiO_2$film after 7 minutes heat absorption, consiquently, $29^{\circ}C$ higher than the former.

A Study on the Absorption Characteristics of Absorbents in Duct System with the Air Cavity (공기층을 갖는 공조덕트 구조물에서 흡음재의 흡음특성에 관한 연구)

  • 김찬묵;김도연;방극호
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.892-897
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have dilemma which has to assume the wave in duct to be a plane wave. Under this assumption. applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excited higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

Improved performance of PEDOT:PSS/pentacene Schottky diode on EAPap (셀룰로우스 기반의 EAPap 작동기의 PEDOT_PSS/Pentacene를 이용한 Schottky diode 성능 개선)

  • Lim, Hyun-Kyu;Cho, Ki-Youn;Kang, Kwang-Sun;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.77-81
    • /
    • 2007
  • Pentacene was dissolved in N-methyspyrrolidone (NMP) and mixed with poly(3,4-ethylenedioxythiophene), poly(styrenesulfonate) (PEDOT:PSS). The solution color changed from deep purple to intense yellow. As the dissolution time increased, visible absorption decreased and ultraviolet (UV) absorption increased. PEDOT:PSS or Pentacene-PEDOT:PSS was spin-coated to control the layer thickness. Three-layered Schottky diodes consisting of Al, PEDOT:PSS or PEDOT:PSS-pentacene, and Au with thickness of 300nm, respectively, were fabricated. The current densities of $4.8{\mu}A/cm^2$ at 2.5MV/m and $660{\mu}A/cm^2$ at 1.9MV/m were obtained for the Au/PEDOT:PSS/Al and Au/Pentacene-PEDOT:PSS/Al Schottky diodes, respectively. The current density of the Schottky diode was enhanced by about two orders of magnitude by doping pentacene to PEDOT:PSS.

  • PDF

Effects of the sound field characteristics of the receiving room on heavy-weight impact sound measurement generated by impact ball (임팩트 볼에 의한 중량충격음 측정에 있어서 수음실 음장특성의 영향)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeong, Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.622-625
    • /
    • 2006
  • This study is a fundamental investigation for standardization of the heavy-weight floor impact measuring method by the impact ball. The distribution chrematistics of floor impact sound level and reverberation time in a receiving room of the testing building for floor impact sound were measured with variations of number and arrangement of the sound-absorbing materials. Total 8 cases were investigated. The distribution of the floor impact sound level($L_{i,\;Fmax}$) was measured at 30 points with same intervals. The absorption coefficient of the room is 0.10 in case of installation of 6 absorbing materials and 0.02 in case of non-installation. The distribution shape of the impact sound pressure level was similar to the result of the bang machine driving at the measured frequency range. However, the overall reduction of the impact sound level investigated in the 125 to 500 Hz shows that the sound absorption characteristics of the receiving room actually affects the result of the heavy-weight impact measurement.

  • PDF

Absorption Characteristics of Micro-perforated Panel Absorber According to High Incident Pressure Magnitude and Variation of Geometric Parameters (높은 입사 음압 및 설계 인자의 변화에 따른 미세 천공판 흡음 기구의 흡음 특성)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1059-1066
    • /
    • 2011
  • The micro-perforated panel absorber(MPPA) is one of promising noise control elements because of its applicability to extreme environments where general porous materials cannot be used. Since the MPPA is inherently non-porous sound absorber, it can be a good candidate of acoustic protection system of a space launcher. The overall sound pressure level inside payload fairings of commercial launch vehicles is so high(around 140 dB OASPL) that the conventional linear impedance model cannot be directly applied to the design of the acoustic protection systems. In this paper an acoustic impedance models of a micro-perforated panel absorber at high sound pressure environment were reviewed and the use of the impedance on the practical design of MPPAs was addressed. The variation of absorption characteristics of MPPA was discussed according to the design parameters, e.g., perforation ratio, the minute hole diameter, the thickness of MPP and the incident sound pressure level.

A Study of Sound Absorbing Characteristics of the Railway Noise Barrier with Respect to Front Perforated Panel and Absorbing Material (철도 방음벽의 전면 타공과 흡음재 변화에 의한 흡음성능 고찰)

  • Kim, Kwanju;Lee, Junheon;Kim, Sanghun;Park, Jinkyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • This study has been analyzed the sound performance of the noise barriers with respect to the configuration of the front perforated panel geometries and the filled absorption materials. Noise barriers' acoustic performance should be required to meet 0.7 of NRC value at least. The global absorbing performance of the barriers have been investigated by changing the opening ratio of the front perforated panel and the absorbing characteristics of the absorbing material using two microphone method. Therefore, It it possible to obtain to increase acoustic performance of the specific frequency ranges by designing the perforate rates of the front panel and absorbing characteristics of the absorbing materials inside, as well. This study try to find out the possibilities of applying the absorbing noise barrier to railway usage.

A study on the noise reduction of practical duct system with the air cavity (공기층을 갖는 실제덕트 구조물에서의 소음저감에 관한 연구)

  • Kim, Chan-Mook;Lee, Doo-Ho;Bahng, Keuk-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1687-1692
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have a dilemma which has to assume the wave in duct to be a plane wave. Under this assumption, applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excites higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF