• 제목/요약/키워드: Vibration Total Value

검색결과 58건 처리시간 0.022초

수전달 진동 저감을 위한 방진 핸들의 효과 분석 (The Analysis of the Effect of the Vibration-proof Handle Used for the Reduction of Hand-transmitted Vibration)

  • 최석현;장한기;박태원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.146-149
    • /
    • 2005
  • Thesedays, the reduction of hand-transmitted vibration of hand-held power tools is important issue for operators' welfare, In the study, frequency response function is measured and vibration total value is evaluated for solving the principle and effect of the BOSCH's vibration-proof handle. This handle functions as a dynamic damper and has the effect, 22% vibration total value reduction under idling condition using a system that consists of a PC with data acquisition system and LabVIEW program. The program in the system makes it possible to evaluate vibration total value according to ISO 5349. This handle offers a good example for figuring out the physical contradiction between the work efficiency and operators' health.

  • PDF

소음.진동에 따른 참전복(Haliotis discus hannai)의 전중량 및 먹이섭식량 변화 (The Change of Total Weight and Food Consumption of Abalone, Haliotis discus hannai under a Vibration and Noise)

  • 정형택;김영식;최상덕
    • 한국환경과학회지
    • /
    • 제13권6호
    • /
    • pp.581-589
    • /
    • 2004
  • This paper describes the amount of food consumption and the change of total weight of abalone under a vibration with noise that can be occurred due to piling work. This experiment was conducted in the aquarium in Yosu National University. In normal situation the juvenile stage shell's(total length is 1~1.5cm) amount of food consumption was 0.81g, the middle stage shell(total length is 3~3.5cm) was 13.61g, and the adult stage shell (Total length is 7~7.5cm) was 43.l9g per 5 organisms in 24 hours, while the experimental group was observed low numerical value compared normal groups. The abalones' food consumption and total weight in both groups, the intermittent and continuance impact with noise and vibration, was reduced during this experiment. The abalones' food consumption and total weight in the experimental groups without vibration were recorded slightly high numerical value than the experimental groups with noise and vibration. Based on this experimental data we could conjecture the noise and vibration are harmful factors to bring up a physiological stress to abalones. Especially, the vibration impact by piling works could produce a considerably unfavorable effect to the abalones than noise impact.

수송 트레일러의 충격 흡수 장치 개발(I) - 보급기종에 대한 특성 및 진단 - (Development of Vibration Absorption Device for the Transportation-Trailer System(I) - Characteristics for the existing vehicle -)

  • 이홍주;홍종호;이성범;김성엽
    • Journal of Biosystems Engineering
    • /
    • 제28권2호
    • /
    • pp.89-96
    • /
    • 2003
  • This study was aimed to identify how the main body vibration of power tiller will be transmitted to the trailer, and to find out the basic information for demage reducing method of agricultural products during transportation. The vertical vibration acceleration level was measured at 6 positions, i.e. engine, hitch, seal and three parts of trailer (front middle, and rear) for the not driving but at the engine speeds of 1,000rpm and driving at 0.35m/s. The results of this research could be summarized as follows; 1. For not driving, the accumulated acceleration level up to 120Hz was 50% of total accelerations at engine part and those were 28~41% at other parts. Those up to 40Hz were 20~30% at engine and hitch part and 2~8% at trailer part. And those up to 20Hz were 13~20% at engine and hitch part and 1~4% at trailer part 2. For the driving with 0.35m/s at paved road, the average vertical accelerations were in the range of 0.005~0.058m/s$^2$. The lowest value of 0.005m/s$^2$ was showed at engine part and the value of 0.031-0.058m/s$^2$ was showed at trailer part. 3. For the driving with 0.35m/s, the accumulated value of average vertical accelerations showed the lowest value at engine parts md showed 5 times value of engine part at trailer part especially highest value at middle part of trailer. 4. For the driving with 0.35m/s, the accumulated acceleration level up to 120Hz was 75% of total accelerations at engine part and those were 20~42% at other parts. Ant those up to 20Hz and 40Hz were 24~26% at engine part and 0.1~0.6% at trailer part.

수전달 진동평가량의 랜덤오차 저감을 위한 공구 핸들에서의 진동과 작용력의 동시 측정 (Simultaneous Measurement of Vibration and Applied Forces at a Power Tool Handle for the Reduction of Random Error When valuating Hand-transmitted Vibration)

  • 최석현;장한기;박태원
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.404-411
    • /
    • 2005
  • To increase accurateness and reliability of the evaluation of power tool vibration transmitted to an operator, it is necessary to measure the grip and feed forces during the measurement of hand-transmitted vibration. In the study a system was invented to measure the vibration and the grip and/or feed force, which consists of a measurement handle and a PC with a data acquisition system and the corresponding software. Strain gauges and an accelerometer were mounted on the handle surface for the simultaneous measurement of the forces and the vibration. The program in the system makes it possible to monitor the grip and feed force during the tool operation so that the operator keeps the applying forces within the pre-determined range. Investigating the vibration total values, frequency-weighted root-mean-square accelerations at the handle, obtained in repetition for each power tool with control of the grip and feed force showed more consistency than those measured without force control. By using the system the experimenter can reduce random error of the measured vibration.

수전달 진동 평가를 위한 공구 핸들에서의 진동과 작용력의 동시 측정 (The Simultaneous Measurement of Vibration and Applied forces at a Power tool handle for the Evaluation of Hand-transmitted Vibration)

  • 최석현;장한기;박태원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.689-694
    • /
    • 2004
  • To increase accurateness and reliability of the evaluation of power tool vibration transmitted to an operator, it is necessary to measure grip and feed forces during the measurement of hand-transmitted vibration. In the study a system was invented to measure the vibration and the grip and/or feed force, which consists of a measurement handle and a PC with data acquisition system and the software. Strain gauges and an accelerometer were mounted on the handle for the simultaneous measurement of the forces and the vibration. The program in the system makes it possible to monitor the grip and feed force during the tool operation so that the operator keeps the applying forces within the pre-determined range. Investigating the vibration total values, frequency-weighted root mean square accelerations at the handle, obtained at various conditions with control of the grip and feed force showed more consistency than those measured without force control. By using the system the experimenter can reduce uncertainty of the measured vibration.

  • PDF

승용차에서의 인체 진동 측정 및 시트 특성 최적설계 (Human Vibration Measurement for Passenger Car and Seat Characteristics Optimization)

  • 조영건;윤용산
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1155-1163
    • /
    • 1999
  • This study deals with the vibration ride quality for passenger car when running on straight highway at the speed of 70km/h. Ten accelerations were measured at four positions, three axes each at the feet, hip, and head, and one axis at the back. Five seats that have different static sponge stiffness were used, and two subjects were participated. These accelerations were analyzed to produce the ride values such as component ride value and overall ride value. It was hard to see the difference of ride value by the change of sponge stiffness. However we could rank the ride quality by the total vibration exposed to passengers. From the transfer function between the hip and the foot, the fundamental mode was observed to be around 5.8Hz. Also the transfer function between the head and hip was studied. The optimal damping ratio of the seat was calculated according to the seat natural frequency with human weighting filter which makes the optimal damping ratio different from that without weighting filter.

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권2호
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

진동경운(振動耕耘)에 관(關)한 기초연구(基礎硏究) -견인력(牽引力), 토오크, 소요동력(所要動力) 및 모멘트에 관(關)한 모형실험(模型實驗)- (Fundamental Study on Oscillating Tillage -Model Test on Draft Force, Torque, Power and Moment)

  • 김용환;김성태;나우정;민영봉;이승규
    • Journal of Biosystems Engineering
    • /
    • 제6권1호
    • /
    • pp.1-14
    • /
    • 1981
  • A laboratory model test was carried out with a newly designed model to figure out the vibration characteristics of the vibratory tillage tool according to the method of forced vibration, i.e., horizontally and vertically forced vibrations. The results are summarized as follows: 1. The reduction ratios of the draft force of the vibratory blade were 14.2-42.6% for the case where the vibration was forced parallel to the travelling direction of the blade, and 15-54.5% for the vertically forced vibration. And it was thought that the method of vertically forced vibration was preferable to the reduction of the draft force. 2. The ratio of the draft force of a vibratory blade to that of a static one could be represented as a function of V/At. It was found to be possible to reduce the draft force by taking a lower value of (V/Af) and this meant that the effictiveness of tillage practice using the vibratory system would be limited. 3. The torque to the main rotating shaft to vibrate the model blade increased frequency and amplitude. This tendency varied according to the physical properties of tested soil. In case of horizontally forced vibration, the torque was 8~34% less than in case of vertically forced vibration. 4. With the increase of frequency, the total power requirement increased linearly, and also the portion of oscillating power requirement in the total power tended to increase. The magnitude of the total power requirement was 1.4-13 times greater than that of a static one for the case of horizontal vibration, and 1.5-15 times greater for the case of vertical vibration. It was thought that the horizontal vibration of the blade was preferable to the vertical vibration in view of the power requirement. 5. A linearity was found between the amplitude of moment oscillogram and magnitude of oscillating acceleration. Only positive values of moment occurred when the blade was forced to vibrate vertically, but negative values occurred in rarity in the case of amplitude A3 when the blade was forced to vibrate horizontally.

  • PDF

대형 잔향실의 방진 설계 및 검증 (Vibration Isolation System of a Large Reverberation Chamber)

  • 김영기;김홍배;이동우;우성현;문상무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1026-1031
    • /
    • 2003
  • A vibration isolation system fur a large reverberation chamber (1,228㎥, 1,000ton) has been installed. The reverberation chamber generates loud noise and induces high level of vibration to perform spacecraft acoustic environmental tests. The isolation system prevents vibration transfer from the chamber to enclosure buildings. This paper describes logical design process and commissioning experiments of the system. Design criteria have been induced from rigid body model of the chamber. Finite element model has been employed to select the characteristics of rubber pads. A total of 21 rubber pads have been installed between the chamber and supporting pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. Absolute transmissibility has been measured while generating 145㏈ in the chamber. The natural frequency of the chamber is 10.5㎐, which is 80% of estimated value. Overall transmissibility at working frequency range (25㎐-10,000㎐) is less than -6㏈.

  • PDF

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.