Fundamental Study on Oscillating Tillage -Model Test on Draft Force, Torque, Power and Moment

진동경운(振動耕耘)에 관(關)한 기초연구(基礎硏究) -견인력(牽引力), 토오크, 소요동력(所要動力) 및 모멘트에 관(關)한 모형실험(模型實驗)-

  • 김용환 (경상대학교 농과대학 농업기계공학과) ;
  • 김성태 (경상대학교 농과대학 농업기계공학과) ;
  • 나우정 (경상대학교 농과대학 농업기계공학과) ;
  • 민영봉 (경상대학교 농과대학 농업기계공학과) ;
  • 이승규 (경상대학교 농과대학 농업기계공학과)
  • Published : 1981.07.15

Abstract

A laboratory model test was carried out with a newly designed model to figure out the vibration characteristics of the vibratory tillage tool according to the method of forced vibration, i.e., horizontally and vertically forced vibrations. The results are summarized as follows: 1. The reduction ratios of the draft force of the vibratory blade were 14.2-42.6% for the case where the vibration was forced parallel to the travelling direction of the blade, and 15-54.5% for the vertically forced vibration. And it was thought that the method of vertically forced vibration was preferable to the reduction of the draft force. 2. The ratio of the draft force of a vibratory blade to that of a static one could be represented as a function of V/At. It was found to be possible to reduce the draft force by taking a lower value of (V/Af) and this meant that the effictiveness of tillage practice using the vibratory system would be limited. 3. The torque to the main rotating shaft to vibrate the model blade increased frequency and amplitude. This tendency varied according to the physical properties of tested soil. In case of horizontally forced vibration, the torque was 8~34% less than in case of vertically forced vibration. 4. With the increase of frequency, the total power requirement increased linearly, and also the portion of oscillating power requirement in the total power tended to increase. The magnitude of the total power requirement was 1.4-13 times greater than that of a static one for the case of horizontal vibration, and 1.5-15 times greater for the case of vertical vibration. It was thought that the horizontal vibration of the blade was preferable to the vertical vibration in view of the power requirement. 5. A linearity was found between the amplitude of moment oscillogram and magnitude of oscillating acceleration. Only positive values of moment occurred when the blade was forced to vibrate vertically, but negative values occurred in rarity in the case of amplitude A3 when the blade was forced to vibrate horizontally.

Keywords