• Title/Summary/Keyword: Vibration Mode Analysis

Search Result 1,553, Processing Time 0.026 seconds

A Study under behavior of tensile and vibration in composite plate by ESPI method (ESPI 법에 의한 복합재 평판의 인장 및 진동 거동에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.106-111
    • /
    • 1999
  • This study discusses a non-contact optical technique electronic, electronic speckle pattern interferometry(ESPI) that is well suited for in-plane and out-of-plane deformation measurement Used as specimen which has the boundary condition of two clamped parallel edges composite material AS4/PEEK[30/-30/90]s was analyzed by ESPI to determined the characteristics of tensile and vibration. These are quantitativly compared with the result of FEM analysis. Finally the results of this study are briefly summarized as follows : (1) In the in-plane strain analysis by comparison of theoretical results with experimental results qualitatively we confirmed that measurement errors are within 3 % in case of accuracy (2) From comparison of experimental vibration modes with numerical vibration mode shapes by the FEM analysis quantitatively we confirmed that vibration mode measurement by the ESPI has high accuacy.

  • PDF

Finite element analysis for longitudinal vibration of nanorods based on doublet mechanics

  • Ufuk Gul;Metin Aydogdu
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.411-422
    • /
    • 2023
  • In the present study, the axial vibration of the nanorods is investigated in the framework of the doublet mechanics theory. The equations of motion and boundary conditions of nanorods are derived by applying the Hamilton principle. A finite element method is developed to obtain the vibration frequencies of nanorods for different boundary conditions. A two-noded higher order rod finite element is used to solve the vibration problem. The natural frequencies of nanorods obtained with the present finite element analysis are validated by comparing the results of classical doublet mechanics and nonlocal strain gradient theories. The effects of rod length, mode number and boundary conditions on the axial vibration frequencies of nanorods are examined in detail. Mode shapes of the nanorods are presented for the different boundary conditions. It is shown that the doublet mechanics model can be used for the dynamic analysis of nanotubes, and the presented finite element formulation can be used for mechanical problems of rods with unavailable analytical solutions. These new results can also be used as references for the future studies.

Vibration Suppression of the HDD Spindle-Disk System Using Piezoelectric Bimorph (압전 바이모프를 이용한 HDD 스핀들-디스크 시스템의 진동저감)

  • Lim, S.C.;Park, J.S.;Choi, S.B.;Park, Y.P.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.592-595
    • /
    • 2004
  • This paper presents the feasibility of the piezoelectric shunt damping for vibration suppression of the highly rotating HDD disk-spindle system. A target vibration mode which restricts the recording density increment of the drive is determined by modal analysis of the drive, and a piezoelectric bimorph is designed to suppress the vibration level of the target mode. After deriving the generalized two-dimensional electromechanical coupling coefficient of the shunted spindle-disk system, the damping performance of the system is predicted by simulating the displacement transmissibility on the target mode. After manufacturing the proposed drive, the vibration suppression performance of the proposed methodology is experimentally evaluated in frequency domain.

  • PDF

Experimental Method of a Super Structure (선체 상부구조물의 실험적 해석)

  • 박석주;박성현;오창근;제해광
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.328-334
    • /
    • 2001
  • Up to now. vibration analysis and vibration engineering have been developed, encompassing the aspects of both experimental and analytical techniques. Using experimental modal analysis or modal testing, the mode shapes and frequencies of practical structure can be measured accurately. Curve-Fitting Method is realized through experimental modal identification. In the experimental modal parameter estimation, the estimation of modal damping factor is difficult for complicated and large structure. Also numbers of Selected mode are determined before the procedure. This paper describes the vibration shape of the super-structure model of ship through experimental modal analysis.

  • PDF

Free Vibration Analysis of Al Cantilever Square Plates with a Brass Inclusion (황동 개재물이 있는 Al 외팔형 정사각판의 자유진동해석)

  • Lee, Youn-bok;Lee, Young-shin;Lee, Se-hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1347-1354
    • /
    • 2005
  • The free vibration characteristics of Al cantilever square plates with a brass inclusion were analyzed experimentally and numerically The experimentally obtained natural frequencies and mode shapes were compared with the FEM analysis results. The impulse exciting method was used for experiment and ANSYS software package was used for FEM analysis. The natural frequencies obtained iron experiment and numerical analysis matched within $0\%$. It was found that the natural frequencies of the Al cantilever square plates with a brass inclusion decrease as the size of inclusion increases. For the third mode shape, comparing the nodal line of the Al plate and the Al plate with a inclusion, the mode shape showed the reversed quadratic curve. The natural frequencies of inclusion plate were decreased as the location of inclusion moves from the clamped edge to the tree edge.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

A Vibration Mode Analysis of Resilient Mounting System and Foundation Structure of Acoustic Enclosure using Finite Element Method (유한요소법을 이용한 음향차폐장치용 탄성마운트 시스템 및 받침대의 진동모드 해석)

  • 정우진;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.493-501
    • /
    • 1999
  • The vibration modes of resilient mounting system and foundation structure which support diesel engine/generator set and acoustic enclosure walls play an important role in the vibration transmission process. So, it is necessary to perform vibration mode analysis of resilient mounting system and foundation structure. For some reasons, if the vibration modal analysis of resilient mounting system and foundation structure of acoustic enclosure could be simultaneously done by finite element method, it would be very efficient approach. In this paper, vibration modal analysis method using finite element method for multi stage mounting system having n d.o.f model was proposed. Vibration analysis of single and double stage resilient mounting system was performed to verify the validity of the proposed method. Also frequency response results were compared in case of rigid foundation model and finite element foundation model which was compared with experimental modal analysis results.

  • PDF

Analysis of excitation forces for the prediction of the vehicle interior noise by the powertrain (Powertrain에 의한 차량실내소음 예측을 위한 엔진 가진력 해석에 관한 연구)

  • Lee, Joo-Hyung;Kim, Sung-Jong;Kim, Tae-Yong;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.82-88
    • /
    • 2006
  • The objective of this paper is to get excitation forces of the engine. A powertrain geometry model is produced by CATIA and its FE model is made by MSC/Patran. A vibration mode analysis which makes us know the natural frequency and mode shape and a running mode analysis which measures the mode shape as a relative displacement about one reference point by measuring the acceleration of each bracket to take a place at the running vehicle are experimentally implemented. After getting a satisfied MAC value by doing a correlation about a measured mode analysis value and analyzed value through MSC/Nastran software, all components are assembled through MSC/ADAMS software which is a dynamic analysis tool. We can predict the vibration of brackets which is the last points to occur the force of the engine combustion by analyzing the combustion force produced by engine mechanism.

  • PDF

STUDY OF CORE SUPPORT BARREL VIBRATION MONITORING USING EX-CORE NEUTRON NOISE ANALYSIS AND FUZZY LOGIC ALGORITHM

  • CHRISTIAN, ROBBY;SONG, SEON HO;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

Phase Separation Algorithm for Ex-core Neutron Signal Analysis

  • Jung, Seung-Ho;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.399-405
    • /
    • 1997
  • In this study a new phase separated spectral analysis algorithm is proposed to identify CSB vibration mode directly from ex-core neutron signals. Ex-core neutron signals can be decomposed into the global, core support barrel (CSB) beam mode, and CSB shell mode components by the new phase separation algorithm based on the characteristics of Fourier transform. By using the proposed algorithm and the conventional spectral analysis the vibration mode of the CSB and the fuel assembly of Ulchin-1 NPP were identified from measured ex-core neutron signals.

  • PDF