• Title/Summary/Keyword: Vibration Modal Analysis

Search Result 1,318, Processing Time 0.028 seconds

Experimental Method of a Super Structure (선체 상부구조물의 실험적 해석)

  • 박석주;박성현;오창근;제해광
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.328-334
    • /
    • 2001
  • Up to now. vibration analysis and vibration engineering have been developed, encompassing the aspects of both experimental and analytical techniques. Using experimental modal analysis or modal testing, the mode shapes and frequencies of practical structure can be measured accurately. Curve-Fitting Method is realized through experimental modal identification. In the experimental modal parameter estimation, the estimation of modal damping factor is difficult for complicated and large structure. Also numbers of Selected mode are determined before the procedure. This paper describes the vibration shape of the super-structure model of ship through experimental modal analysis.

  • PDF

Modal Parameter Estimation of a Steel Frame Structure by Using Free Vibration Displacement Data (자유진동 변위데이터를 이용한 철골구조물의 모드인자 파악)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.19-25
    • /
    • 2009
  • The proper orthogonal decomposition (POD) analysis of vibration of a steel frame structure is performed to extract modal parameters. The theoretical background of the POD method is introduced briefly, and this technique is further applied to free vibration displacements of one bay-two story steel frame structure to extract the modal parameters. From the POD analysis of the steel frame structure, it is found that important modal parameters such as true mode shapes, modal kinematic energy, natural frequencies, and damping ratios can be obtained for the building efficiently and in detail. Therefore, it is concluded that the POD method could be one of the useful techniques in analysis of vibration of structures.

  • PDF

Vibration experiment of precision stage that use laser vibrator (비접촉식 진동측정 장치를 이용한 정밀 스테이지의 진동특성 평가시험)

  • Lee, Jae-Woo;Lee, Kang-Wook;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1224-1230
    • /
    • 2007
  • In this study, a new modal test method is presented to evaluate vibration characteristic of the nano imprint stage system. Since it is difficult to measure vibration level without contacting the machine component, non contacting modal test method, laser scanning system is ultrared. Finite element analysis results are compared with the modal test results.

  • PDF

Output-only modal parameter identification of civil engineering structures

  • Ren, Wei-Xin;Zong, Zhou-Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.429-444
    • /
    • 2004
  • The ambient vibration measurement is a kind of output data-only dynamic testing where the traffics and winds are used as agents responsible for natural or environmental excitation. Therefore an experimental modal analysis procedure for ambient vibration testing will need to base itself on output-only data. The modal analysis involving output-only measurements presents a challenge that requires the use of special modal identification technique, which can deal with very small magnitude of ambient vibration contaminated by noise. Two complementary modal analysis methods are implemented. They are rather simple peak picking (PP) method in frequency domain and more advanced stochastic subspace identification (SSI) method in time domain. This paper presents the application of ambient vibration testing and experimental modal analysis on large civil engineering structures. A 15 storey reinforced concrete shear core building and a concrete filled steel tubular arch bridge have been chosen as two case studies. The results have shown that both techniques can identify the frequencies effectively. The stochastic subspace identification technique can detect frequencies that may possibly be missed by the peak picking method and gives a more reasonable mode shapes in most cases.

Modal Testing of Mechanical Structures Subject to Operational Excitation Forces

  • Gade, Svend;Moller, Nis B.;Herlufsen, Henrik;Brincker, Rune;Andersen, Palle
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1162-1165
    • /
    • 2001
  • Operational Modal Analysis also known as Output Only Modal Analysis has in the recent years been used for extracting modal parameters of civil engineering structures and is now becoming popular for mechanical structures. The advantage of the method is that no artificial excitation need to be applied to the structure or force signals to be measured. All the parameter estimation is based upon the response signals, thereby minimising the work of preparation for the test. This test case is a controlled lab set-up enabling different parameter estimation methods techniques to be used and compared to the Operational Modal Analysis. For Operational Modal Analysis two different estimation techniques are used: a non-parametric technique based on Frequency Domain Decomposition (FDD), and a parametric technique working on the raw data in time domain, a data driven Stochastic Subspace Identification (SS!) algorithm. These are compared to other methods such as traditional Modal Analysis.

  • PDF

Vibration modelling and structural modification of combine harvester thresher using operational modal analysis and finite element method

  • Zare, Hamed Ghafarzadeh;Maleki, Ali;Rahaghi, Mohsen Irani;Lashgari, Majid
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.33-46
    • /
    • 2019
  • In present study, Operational Modal Analysis (OMA) was employed to carry out the dynamic and vibration analysis of the threshing unit of the combine harvester thresher as a mechanical component. The main study is to find the causes of vibration and to decrease it to enhance the lifetime and efficiency of the threshing unit. By utilizing OMA, structural modal parameters such as mode shapes, natural frequencies, and damping ratio was calculated. The combine harvester was excited by engine to vibrate different parts and accelerometer sensor collected acceleration signals at different speeds, and OMA was utilized by nonparametric and frequency analysis methods to obtain modal parameters while vibrating in real working conditions. Afterwards, finite element model was designed from the thresher and updated using the data obtained from the modal analysis. Using the conducted analyses, it was specified that proximity of the thresher pass frequency to one of the natural frequencies (16.64 Hz) was the most important effect of vibration in the thresher. Modification process of the structure was carried out by increasing mass required for changing the natural frequency location of the first mode to 12.4 Hz in order to reduce resonance and vibration of the thresher.

Experimental Modal Analysis of the Hinge Structure (힌지 구조물의 실험적 동특성 해석)

  • 전병희;양명석;강휘원;이기범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.629-634
    • /
    • 2004
  • Modal parameters of the total missile structure including a hinge mechanism are estimated by the experimental modal analysis. The free-free boundary condition is simulated by hanging the missile structure with a wire rope, and the missile structure is excited by the random vibration technique. Test results are used to verify the FE analysis, the 1-D FE model is modified by 3-D model at the hinge part. Consequently, the modal parameters of the missile structure are estimated preciously.

  • PDF

A Vibration Mode Analysis of Resilient Mounting System and Foundation Structure of Acoustic Enclosure using Finite Element Method (유한요소법을 이용한 음향차폐장치용 탄성마운트 시스템 및 받침대의 진동모드 해석)

  • 정우진;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.493-501
    • /
    • 1999
  • The vibration modes of resilient mounting system and foundation structure which support diesel engine/generator set and acoustic enclosure walls play an important role in the vibration transmission process. So, it is necessary to perform vibration mode analysis of resilient mounting system and foundation structure. For some reasons, if the vibration modal analysis of resilient mounting system and foundation structure of acoustic enclosure could be simultaneously done by finite element method, it would be very efficient approach. In this paper, vibration modal analysis method using finite element method for multi stage mounting system having n d.o.f model was proposed. Vibration analysis of single and double stage resilient mounting system was performed to verify the validity of the proposed method. Also frequency response results were compared in case of rigid foundation model and finite element foundation model which was compared with experimental modal analysis results.

  • PDF

Shear and Normal Damping Effects of Square Sandwich Plates with Four Edges Clamped (네변이 고정된 사각 샌드위치 평판에서의 수직 및 전단 감쇠 효과)

  • 이병찬;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.217-223
    • /
    • 1996
  • A structure's vibration characteristic is determined by modal property of the system. Through proper vibration analysis or experiments, the structure can be modified to reduce of vibration and noise. This paper is concerned with the natural frequency and modal loss factor of sandwich plates with viscoelastic core. The effects of shear and normal strain in the viscoelastic layer are investigated on modal properties, natural frequency and modal loss factor, by changing geometry parameter and viscoelastic material property of sandwich plates. The errors of modal parameters resulting from neglecting the extension or compression in the core material for simply supported(S-S-S-S) case are compared with those for clamped(C-C-C-C) boundary condition. Finite difference method(FDM) is utilized as numerical analysis technique of square sandwich plates for fixed boundary conditions. In order to reduce computation time and increase accuracy, improved finite difference expression with fourth order truncation error was used.

  • PDF

Modal analysis of viscoelastic nanorods under an axially harmonic load

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2020
  • Axially damped forced vibration responses of viscoelastic nanorods are investigated within the frame of the modal analysis. The nonlocal elasticity theory is used in the constitutive relation of the nanorod with the Kelvin-Voigt viscoelastic model. In the forced vibration problem, a cantilever nanorod subjected to a harmonic load at the free end of the nanorod is considered in the numerical examples. By using the modal technique, the modal expressions of the viscoelastic nanorods are presented and solved exactly in the nonlocal elasticity theory. In the numerical results, the effects of the nonlocal parameter, damping coefficient, geometry and dynamic load parameters on the dynamic responses of the viscoelastic nanobem are presented and discussed. In addition, the difference between the nonlocal theory and classical theory is investigated for the damped forced vibration problem.