• Title/Summary/Keyword: Vibration Isolation and Control

Search Result 178, Processing Time 0.029 seconds

A Sliding Mode Control for an Engine Mount Using Magneto-Rheological Fluid (MR유체를 이용한 엔진마운트의 슬라이딩모드제어)

  • 이동길;안영공;정석권;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1144-1149
    • /
    • 2001
  • In this paper, a sliding mode controller of a fluid engine mount using MR (Magneto-Rheological) fluid was discussed When the MR fluid is applied to a fluid mount, resistance of MR fluid can be controlled by electro-magnetic valve installed in the inertia track. Since the rheological property of the MR fluid shows a function of shear rate, the damping characteristics of the mount will be change according to the frequency. Changing an applied magnetic field to the valve changes the property of the mount, such as the resistance of the MR fluid, the notch and the resonant frequencies due to the fluid passing, quantity of the fluid passing, the effective piston area of the volumetric damping and stiffness. Therefore, the fluid mount using MR fluid can be regarded as a variable structure system The sliding mode control known well as a particular type of variable structure control was introduced in this study. The sliding mode control, which has inherent robustness, is also expected to improve the control performance in the engine mount The sliding mode controller for the mount formatted by taking into account the response property with a time constant to MR fluid and the variable mount property. The motion equations of the fluid mount are derived from Newton's law of motion and used in numerical simulation. Numerical simulations illustrate the effectiveness of the sliding mode controller.

  • PDF

Base Isolation and Vibration Control System (진동 방지 및 제어)

  • 조순호
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.29-40
    • /
    • 1992
  • 본 기사는 진동방지 및 제어기술의 중요성을 인식하고 이에 수반되는 동역학적 이론 및 기술에 대한 최근 연구 실적과 동향, 그리고 특히 건물에 적용예가 많은 일본의 진동방지 및 제어 장치들을 중심으로 실제 상업제품으로 완성된 것들의 특성을 조사하며, 또한 이의 구조해석을 위해 각종 형태별 진동방지 장치의 해석모델 및 경험론적으로 제시하고 있는 설계지침에 대하여 알아보고자 한다.

  • PDF

Active Microvibration Control System Using Maglev Actuator (자기부상방식의 능동 미세진동 제어시스템)

  • Lee, Joo-Hoon;Lee, Se-Han;Hwang, Don-Ha;Kim, Yong-Joo;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2492-2494
    • /
    • 2004
  • A system, featuring the electromagnetic levitation actuator for control in the vertical direction, of active microvibration control was proposed. The main components of this system are a vibration isolation table with built-in acceleration sensors for detecting microvibration, electromagnetic levitation actuators with built-in permanent magnets and electromagnets, and a digital controller with high precision signal converters.

  • PDF

Performance Evaluation of a Mixed-Mode Type ER Engine Mount (I);Manufacturing and Test of Engine Mount (복합모드형 ER엔진마운트의 성능평가 (I);엔진마운트의 제작 및 시험)

  • Choe, Yeong-Tae;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.370-377
    • /
    • 2000
  • This paper presents a mixed-mode type ER(electro-rheological) engine mount, and its vibration control performance for a passenger vehicle is presented. The field-dependent yield stress of a transfo rmer oil-based ER fluid is empirically distilled in both shear and flow modes. This is then incorporated with the governing equation of motion of the proposed mixed-mode(shear mode plus flow mode) type engine mount. The damping force is analyzed with respect to the intensity of the electric field and design parameters such as electrode gap. Subsequently, the ER engine mount which is equivalent to the conventional hydraulic engine mount in terms of the damping level is designed and manufactured. Both computer simulation and experimental test are undertaken in order to evaluate vibration isolation performance. In addition, this performance is compared with that of the conventional hydraulic engine mount.

Active Vibration Control of Automotive Engine Mount Using MR Fluid and Piezostack (MR 유체와 압전 작동기를 이용한 자동차 엔진 마운트의 능동진동제어)

  • Choi, Sang-Min;Nguyen, Vien-Quoc;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1150-1156
    • /
    • 2008
  • This paper presents vibration control of an active hybrid engine mount featuring a magneto-rheological(MR) fluid and a piezostack actuator. The MR fluid is adopted to improve isolation performance at resonant frequencies, while the piezostack actuator is adopted for performance improvement at non-resonant frequencies, especially at high frequencies. Based on some particular practical requirements of engine mounts, the proposed mount is designed and manufactured. The characteristics of rubber element, piezostack actuator and MR fluid are verified for system analysis and controller synthesis. The dynamic model of the proposed mount with a supported mass (engine) is established. In this work, a sliding mode controller is synthesized for the mount system to reduce vibrations transmitted from the engine in a wide frequency range. Computer simulations are performed to evaluate control performances of the proposed active engine mount in time and frequency domains.

Experimental Performance Analysis and Vibration Control of Commercial Vehicle Seat Suspension System Using ER Seat Damper (ER시트댐퍼를 사용한 상용차운전석의 실험적 성능해석 및 진동제어)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.7-13
    • /
    • 1998
  • This paper presents a new concept of a commercial vehicle seat suspension system. The proposed suspension system features an ER(electro-rheological)damper which can produce continuously tunable damping forces by control elecric fields. A dynamic model of the ER damper is first achieved by incorporating Bingham property of the ER fluid, followed by the formulation of governing equations of motion for the suspension system The effectiveness of the proposed ER seat suspension system is evaluated by investigating vibration with respect to sinusoidal inputs.

  • PDF

A Study on the Vibration Reduction by the Position of Borehole using Experimental Waveform and Finite Element Analysis (실측파형과 유한요소해석을 통한 방진구의 위치별 진동 저감 연구)

  • Song, Jeong-Un;Kim, Seung-Kon;Park, Hoon;Hong, Woong-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.381-387
    • /
    • 2013
  • In order to improve the environmental vibration, it is necessary to method for not only reduce the vibration source, but also control the vibration path. In this study, we used borebole for estimate the vibration reduction. And also, we analyzed displacement and vibration velocity caused by the position of borehole as well as the condition of borehole in ground structure. Visual FEA(Finite Element Analysis) program was used in this numerical analysis. The results are as follows : The displacement magnitude and X, Y direction displacement were represented to different results due to the condition and position of borehole, and were represented to the lowest values when the position of borehole is the most close condition from the vibration source. And also, the vibration velocity was decreased as using borebole in ground structure. The isolation efficiency of the vibration was calculated to maximum 18.40% when borehole was established to the most close position from the vibration source and the receive point.

Performance Investigation of Semi-Active Control Logic to Minimize a Pointing Performance Degradation of On-Board Payload by Chattering Effects (Chattering에 의한 위성 탑재체 지향성능저하 최소화를 위한 반능동제어기법 성능분석)

  • Oh, Hyun-Ung;Choi, Young-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.882-889
    • /
    • 2010
  • Semi-active vibration control is one of the attractive control methods for space application due to its robustness as passive damping system and much higher damping performance than passive system. However, a chattering induced by the sudden variation of damping force at the time of On-Off switching of semi-active control device degrades pointing performance of the on-board payload. In this paper, to enhance the pointing performance of the on-board payload, we proposed a semi-active vibration isolation with a strategy for attenuating chattering effect. Numerical simulation results using simplified analysis model indicated that the proposed semi-active control strategy produced much better isolation performance than the conventional Bang-Bang control semi-active control laws derived from skyhook and LQ theories.

Static and Dynamic Tests on Laminated Rubber Bearings (적층(積層)고무받침의 정적(靜的) 및 동적(動的) 특성실험(特性實驗))

  • Kim, Nam Sik;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.85-93
    • /
    • 1993
  • Base isolation systems are economic and efficient for the control of structural vibration. In this study, the base isolators of LRB(laminated rubber bearing) type which have been generally used are fabricated and tested. From the static and dynamic tests, the characteristics of the base isolators, considering strain-hardening, hysteretic damping and horizontal stiffnesses, etc., are verified and particularly the feasibility as base isolation devices is discussed. Consequently, the test results are compared with the analytical ones that are derived from idealization as a bilinear model.

  • PDF

Serviceability-oriented analytical design of isolated liquid damper for the wind-induced vibration control of high-rise buildings

  • Zhipeng Zhao;Xiuyan Hu;Cong Liao;Na Hong;Yuanchen Tang
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • The effectiveness of conventional tuned liquid dampers (TLDs) in controlling the wind-induced response of tall flexible structures has been indicated. However, the impaired control effect in the detuning condition or a considerably high mass cost of liquid may be incurred in ensuring the high-level serviceability. To provide an efficient TLD-based solution for wind-induced vibration control, this study proposes a serviceability-oriented optimal design method for isolated TLDs (ILDs) and derives analytical design formulae. The ILD is implemented by mounting the TLD on the linear isolators. Stochastic response analysis is performed for the ILD-equipped structure subjected to stochastic wind and white noise, and the results are considered to derive the closed-form responses. Correspondingly, an extensive parametric analysis is conducted to clarify a serviceability-oriented optimal design framework by incorporating the comfort demand. The obtained results show that the high-level serviceability demand can be satisfied by the ILD based on the proposed optimal design framework. Analytical design formulae can be preliminarily adopted to ensure the target serviceability demand while enhancing the structural displacement performance to increase the safety level. Compared with conventional TLD systems, the ILD exhibits higher effectiveness and a larger frequency bandwidth for wind-induced vibration control at a small mass ratio.